
GPU-based Architectures and their Benefit for
Accurate and Efficient Wireless Network

Simulations

Philipp Andelfinger∗, Jens Mittag†, Hannes Hartenstein∗†
∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany,

Email: {philipp.andelfinger, hannes.hartenstein}@kit.edu
†Institute of Telematics, Karlsruhe Institute of Technology, Germany, Email: jens.mittag@kit.edu

Abstract—In recent years, a trend towards the usage of
physical layer models with increased accuracy can be observed
within the wireless network community. This trend has several
reasons. The consideration of signals – instead of packets – as the
smallest unit of a wireless network simulation enables the ability
to reflect complex radio propagation characteristics properly,
and to study novel PHY/MAC/NET cross-layer optimizations that
were not directly possible before, e.g. cognitive radio networks
and interference cancelation. Yet, there is a price to pay for the
increase of accuracy, namely a significant decrease of runtime
performance due to computationally expensive signal processing.
In this paper we study whether this price can be reduced – or
even eliminated – if GPU-based signal processing is employed.
In particular, we present and discuss four different architectures
that can be used to exploit GPU-based signal processing in
discrete event-based simulations. Our evaluation shows that the
runtime costs can not be cut down completely, but significant
speedups can be expected compared to a non GPU-based solution.

I. INTRODUCTION

Within the past few years, a tendency towards the usage

of more accurate representations for the lower layers can be

observed in the wireless networking community. What started

by means of experimentation platforms and testbeds that are

based on software-defined radios [1] or channel emulation

techniques [2] has recently also been adopted to wireless net-

work simulations [3]. The motivation to increase the accuracy

of the lower layers, in particular of the physical layer and

below, is twofold. First, it allows to reflect the characteristics

of complex radio propagation conditions properly, i.e. time-

and frequency selective channels, and second, it provides the

ability to study the feasibility and performance of emerging

new concepts such as cognitive radio networks, interference

cancelation or other cross-layer optimizations. For an in-depth

discussion of the motivation to increase the accuracy and

further examples we refer to [3].

In comparison to the abstraction of packets, as done by

traditional network simulators which typically ignore individ-

ual bits and consider the packet as their smallest unit, an

accurate representation explicitly considers individual bits and

their modulation as complex time samples, cf. Figure 1. As

illustrated, the signal-level consideration describes a packet

in much more detail and can require a sequence of up to

thousands of complex time samples to describe a packet

completely. For the rest of this paper, we term a simulation

Fig. 1. Comparison of packet-level and signal-level modeling of a data frame.

that treats each packet as a collection of bits and corresponding

signals: accurate wireless network simulation.

Although there are many reasons to opt for accurate wireless

network simulations, there is a price to pay. As shown in [3],

the runtime performance of such simulations is reduced by

up to four or five orders of magnitude due to a data intensive

and computationally expensive signal processing. Hence, there

is a trade-off between accuracy and runtime performance and

one should ask oneself twice whether one needs the increase

of accuracy or not. Considering that an increased accuracy

is desired or required, the question is raised whether the

necessary costs can be reduced. In this paper, we therefore

study whether this price can be reduced – or even eliminated –

if data intensive signal processing algorithms are parallelized

and ported to GPUs. In particular, we present and compare

four different architectures for a GPU-accelerated simulation

of accurate wireless networks. All four architectures aim to

decrease the overhead that exists due to data transfers from/to

GPU and aim to increase the amount of data to be processed in

parallel. While the most simple and less effective architecture

does not require any changes to the runtime logic of a discrete

event-based network simulator, our more effective proposals

require changes and employ aggregation of independent sim-

ulation events and/or memory reuse on GPUs.

The rest of the paper is structured as follows. First, we

cover related work in Section II and give a brief introduction

to accurate wireless network simulation in Section III. In

Section IV we then present performance results of GPU-based

signal processing, as well as present, compare and discuss

four GPU-based architectures for the simulation of accurate

wireless networks. Section V concludes this paper.

II. RELATED WORK

Parallel simulation using GPUs has been approached in

various ways in literature. Xu et al. [4] proposed a simulation

19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/11 $26.00 © 2011 IEEE

DOI 10.1109/MASCOTS.2011.40

421

19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/11 $26.00 © 2011 IEEE

DOI 10.1109/MASCOTS.2011.40

421

19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/11 $26.00 © 2011 IEEE

DOI 10.1109/MASCOTS.2011.40

421

platform utilizing GPUs for signal processing tasks and eval-

uated the platform with regard to runtime performance. The

platform integrates CPU-based simulator logic and GPU-based

processing for computationally intensive tasks, corresponding

to the “hybrid” approaches presented later in this paper. Xu et

al. showed that GPU-based processing has clear performance

benefits when maximizing the amount of input data per GPU

work cycle. However, they state that algorithms used for

encoding and decoding of packets in communication systems

are not suitable to exploit the parallel processing capabilities

of GPUs. Furthermore, it seems that Xu et al. only considered

multiple events within the context of one node for aggregation,

and not within the context of multiple network nodes.

In 2006, Perumalla et al. [5] presented a first study on

whether GPU-based processing can improve the performance

of simulators with fixed time increments and of discrete

event-based simulations. While simulators with fixed time

increments, e.g. agent-based simulators, are well suited for

parallelization on GPUs, they concluded that further research

is required to increase the performance of discrete event-based

simulation frameworks through the usage of GPUs.

According to [6] and [7] GPUs have proven to improve

the runtime performance of signal processing algorithms, e.g.

for tasks such as bit modulation, fast-fourier transformations

or raytracing. The objective of this paper is therefore not

to accelerate specific algorithms through GPU-based signal

processing, but to improve the overall performance of a

discrete event-based simulator that employs signal processing

at specific events.

When partitioning the simulation workload and distributing

it to multiple processors or cores, correctness of results be-

comes an issue, as dependencies between simulation events

need to be taken into consideration. The lookahead metric

denotes the time period during which future events can be

processed in parallel without violating correctness constraints.

Interdependencies between events limiting the lookahead are

a result of characteristics of the system being simulated. Kunz

et al. [8] proposed a formalism for modeling event interdepen-

dencies to facilitate parallel processing by attributing time du-

rations to individual events. Independent events are identified

by their overlapping time durations on the simulation timeline.

Characteristics of wireless communication scenarios allowing

for parallel processing of events are addressed in detail in [9].

Parallelism is exploited based on the radio propagation delay,

terrain information and channel characteristics.

III. ACCURATE WIRELESS NETWORK SIMULATION

In [3] we presented an extension to the popular network

simulator NS-3 in order to enable an accurate simulation

of wireless networks based on IEEE 802.11a, g or p. The

extension discards the abstraction of a packet and considers

individual bits as well as their corresponding signals. A packet

is not only described by its length, data rate and the used

transmit power anymore, but by a sequence of up to thousands

of complex time samples. As a result, an implementation of the

physical layer has to employ and emulate the computationally

Fig. 2. Sequence of events that is executed in a network simulation in case
a node transmits a packet and multiple nodes receive the packet.

expensive signal processing steps that are normally executed in

a real transceiver, e.g. convolutional encoding, bit scrambling,

interleaving, OFDM modulation, signal detection and channel

estimation. Due to the data intensive signal processing the

runtime performance of such a simulation is reduced by

up to four or five orders of magnitude. To understand now

how GPU-based signal processing should be integrated into

a discrete event-based network simulator, we will sketch the

transmission and reception processes in the following and

outline how signal processing is scattered over these events.

Due to space restrictions we skip the details of the overall

physical layer emulation, refer to [3] for a detailed explanation

of the specific signal processing algorithms, and focus on the

aspects that are relevant in order to understand our proposed

GPU-based architectures.

In order to reflect the behavior of a transceiver correctly

and to account for possibly overlapping transmissions, the

transmission and reception process has to be divided into

several events. As illustrated in Figure 2 a packet transmission

will lead to several events at each potential receiver: first,

an event that indicates the arrival of the first time sample is

scheduled, followed by events that reflect the points in time at

which the last time sample of the preamble, the packet header

and the payload has been received. At each of those events,

a decision will be made whether the reception process of this

packet is continued or not. Hence, in case of multiple receivers,

there will be a large amount of events that are separated only

slightly in time. Since signal processing has to be performed at

each single event, it is not obvious whether GPU-based signal

processing in a network simulation can generally improve

the overall runtime performance. For instance, it is not clear

whether and under which conditions the overhead due to data

transfers from CPU to GPU and vice versa, as well as due

to the delay for context switches between CPU and GPU,

is greater or smaller than the performance gains that can be

achieved through parallel processing on GPUs.

IV. GPU-BASED OPTIMIZATION

A. GPU-based Signal Processing

As a basis for subsequent performance analysis, we ported

three computationally expensive signal processing algorithms

used for an accurate simulation of wireless network communi-

cation to GPUs. For each, we measured the achieved speedup

422422422

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

 F
ac

to
r

Number of Packets Processed in Parallel

Rayleigh Fading
Frame Synchronization

Viterbi Decoding

Fig. 3. Speedups achieved by GPU-based parallelization of individual signal
processing algorithms

factors when running the algorithms on an ATI Radeon HD

5870 graphics card with 1600 cores in relation to a sequential

execution on a single core of an AMD Phenom II X6 1035T

CPU. The algorithms operate on packets with a payload of

500 bytes at the lowest data rate – and thus on a large number

of complex time samples – each. To analyze the conditions

under which significant speedups can be observed, we vary

the number of packets processed in parallel between 1 to

100, corresponding to 1 to 100 receivers. Figure 3 illustrates

the speedup factors achieved by parallelization. Across all

three algorithms it is evident that speedups are marginal when

only a small number of packets is processed in parallel. This

observation can be attributed to the data transfer and context

switch overheads in particular, as well as to the lower clock

speed of the GPU cores in general. The benefit of GPU-

based signal processing is only significantly increased if the

number of packets to be processed in parallel is raised. For

instance, when processing 100 packets in parallel, we observed

speedup factors of 59.1 for the computation of Rayleigh fading

channel effects, 44.3 for frame synchronization and 27.0

for Viterbi decoding. Since recent GPUs and SDKs support

double precision floating point arithmetic, the results of the

sequential CPU-based execution and the parallelized GPU-

based execution differ only in the order of 10−15 on average.

From the results, we conclude that substantial speedups can

be achieved using GPU-based signal processing. However, we

identify a maximization of the amount of input data processed

per GPU work cycle as a prerequisite for optimal performance.

B. GPU-based Simulation Architectures

In the following, we present, evaluate and compare four

architectures that aim to provide efficient GPU-based signal

processing within a discrete event-based network simulator.

The most simple approach of a GPU-based discrete event

simulation is depicted in Figure 4a. Events are processed

sequentially on the CPU. For time-consuming signal pro-

cessing tasks, input data is transfered to the graphics card’s

memory. Once the GPU finishes parallel processing of the task,

output data is transfered back to the host computer’s main

memory. This process is repeated for all signal processing

tasks associated with the event. A second and more efficient

approach is based on the aggregation and parallel execution of

identical tasks that belong to different but independent events,

cf. Figure 4b. With this approach, multiple data transfers and

context switches are reduced to only one transfer and one

context switch. This approach can be optimized even further,

if the output of one event serves as the input of the next

(a) Hybrid CPU/GPU simulator

(b) Hybrid CPU/GPU simulator with event aggregation

(c) Hybrid CPU/GPU simulator with event aggregation and memory reuse

(d) Fully GPU-based simulator

Fig. 4. Approaches to GPU-based time-discrete event-based simulation

 0
 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

 F
ac

to
r

Number of Packets Processed in Parallel

Hybrid/Aggregation/Memory Reuse
Hybrid/Aggregation

Hybrid

Fig. 5. Comparison of the proposed GPU-based architectures against the
sequential processing on CPU.

event, or if subsequent events operate on the same input data.

Additional data transfers can then be saved by reusing memory

and data that has been transfered to the graphics card at

an earlier stage, cf. Figure 4c. Finally, a purely GPU-based

simulation architecture can be envisioned (cf. Figure 4d).

With this approach, all simulation logic resides on the GPU,

reducing data transfers to the beginning and the end of the

simulation.

To evaluate and compare the performance of the four archi-

tectures, we developed a discrete event-based simulator from

scratch. Based on this simulator, we developed a benchmark

that reflects a simple simulation comprised of a chain of three

simulation events associated with a single frame transmission

and the corresponding receptions. Each event triggers one of

the three signal processing algorithms, whereas an algorithm

uses the output of the previous algorithm as its input.

Figure 5 depicts the speedups achieved when implement-

ing the GPU-based simulation architectures compared to a

sequential processing of events on CPU. As can be seen,

a hybrid simulation yields a speedup factor of 1.5 inde-

pendent of the number of receivers. This demonstrates the

impact of overheads involved in frequent crossing of the

CPU/GPU boundary. Additional event aggregation yields an

overall speedup factor of 30.9 for 100 receivers. Elimination

of redundant data transfers by memory reuse further increases

the total speedup factor to 69.6 for 100 receivers.

A fully GPU-based simulation is technically not yet feasible,

since sufficient support for the synchronization of parallel

threads is not provided by current GPU chipsets nor by the

SDKs. However, such a synchronization is crucial in order to

implement the discrete event-based scheduling and processing

423423423

logic of the simulator itself.

C. Discussion and Outlook

Based on the obtained results, it looks as if hybrid simula-

tion with event aggregation and memory reuse provides the

best runtime performance. In order to answer our primary

question – whether the costs for accurate wireless network

simulations can be reduced or even eliminated – we applied

our findings to the NS-3 physical layer extension sketched in

Section III. However, since transparent memory management

on GPUs is not yet supported by recent SDKs, we applied

only our hybrid approach with event aggregation.

According to our code profiling, the three signal processing

algorithms that we ported to the GPU, cf. Section IV-A,

contribute to approx. 86 % of the total simulation runtime –

considering a network scenario with 100 nodes. Regarding

Amdahl’s law, the maximum speedup that could theoretically

be achieved is therefore 7.1. In practice, however, we only

achieved a speedup factor of 4.3, which accounts for approx.

60 % of the theoretical maximum. Can we gain more? The

answer is again given by our code profiling, which states that

more than 99 % of the total runtime is spent on parallelizable

signal processing, which increases the maximum achievable

speedup to more than 110. Even if only 60% of this theoretical

maximum is achieved, the overall costs in terms of runtime

slowdown can be reduced from four down to two orders of

magnitude. With an additional reuse of GPU memory, even

higher speedups can be expected.

As pointed out above and demonstrated in the previous

section, significant speedups for the accurate simulation of

wireless networks can be achieved. However, minimization

of the overheads depends on features that are not present

in existing network simulation frameworks. Therefore, we

now discuss the amount of modifications that are needed

to establish efficient GPU-based signal processing in such

network simulators. The hybrid approach requires only a port

of the signal processing algorithms to the GPU. The core

logic of the event scheduler remains untouched. As such, our

most simple hybrid approach is easy to integrate. To support

event aggregation, dependencies between events, e.g. due to

model or scenario characteristics, must be considered during

simulation in order to maintain correctness of the simulation

results. To support a hybrid simulation with memory reuse

the GPU’s memory has to be managed, either transparently

by the SDK or manually by the developer himself. While

the first solution is not available yet, the second one is

vulnerable to memory leaks and requires a careful handling

of memory allocation, pointers and memory swapping by a

developer – which is in strong contrast to the objectives of

modern simulation frameworks that adhere to “best practices”

of software engineering such as modularity of code and usage

of design patterns.

In order to enable fully GPU-based simulations, future

GPUs and SDKs need to offer a global synchronization

between GPU cores. As long as global synchronization is

not provided, event schedulers can not be ported to the GPU.

Hence, the core simulation logic has to stay on the CPU.

V. CONCLUSIONS

In this paper, we studied the potential of GPU-based

processing in order to improve the runtime performance of

computationally intensive accurate wireless network simula-

tions. We presented, compared and evaluated four simulator

architectures that support the integration of GPU-based signal

processing into existing or future simulation frameworks.

Exemplarily, we parallelized three computationally intensive

signal processing algorithms and ported them to GPUs to

achieve individual speedup factors of up to 60 compared to

sequential execution on a CPU. In a benchmark simulation

we studied how efficiently our proposed architectures can

integrate the individual optimizations into a discrete event-

based simulator and observed speedup factors of up to 70 using

the most advanced architecture that is feasible with state-of-

the-art GPUs and SDKs. We identified parallel execution of

independent events, i.e., event aggregation, and memory reuse

as essential mechanisms to minimize the overheads and to

increase observable speedups. Furthermore, it is necessary to

port as many signal processing algorithms as possible to enable

accurate wireless network simulations at only moderate costs.

Acknowledgment: Jens Mittag acknowledges the support of the

Ministry of Science, Research and the Arts of Baden-Württemberg

(Az: Zu 33-827.377/19,20), the Klaus Tschira Stiftung, the INIT

GmbH and the PTV AG for the research group on Traffic Telematics.

REFERENCES

[1] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. M. Voelker, “SORA: High Performance Software
Radio Using General Purpose Multi-core Processors,” in Proc. of the 6th
USENIX Symposium on Networked Systems Design and Implementation,
2009, pp. 75–90.

[2] G. Judd and P. Steenkiste, “Repeatable and Realistic Wireless Experi-
mentation Through Physical Emulation,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, pp. 63–68, 2004.

[3] J. Mittag, S. Papanastasiou, H. Hartenstein, and E. G. Ström, “Enabling
Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular
Communication Networks,” Proceedings of the IEEE, no. 99, pp. 1–16,
July 2011.

[4] Z. Xu and R. Bagrodia, “GPU-Accelerated Evaluation Platform for High
Fidelity Network Modeling,” in Proc. of the 21st Int’l Workshop on
Principles of Advanced and Distributed Simulation, 2007, pp. 131–140.

[5] K. S. Perumalla, “Discrete-event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs),” in Proc. of the 20th
Workshop on Principles of Advanced and Distributed Simulation, 2006,
pp. 74–81.

[6] A. Kerr, D. Campbell, and M. Richards, “GPU VSIPL: High-Performance
VSIPL Implementation for GPUs,” in High Performance Embedded
Computing Workshop, September 2008.

[7] S. Bai and D. Nicol, “GPU Coprocessing for Wireless Network Simula-
tion,” Tech. Rep., 2009.

[8] G. Kunz, O. Landsiedel, J. Gross, S. Götz, F. Naghibi, and K. Wehrle,
“Expanding the Event Horizon in Parallelized Network Simulations,” in
Proc. of the 18th Annual Meeting of the IEEE/ACM Int’l Symposium on
Modeling, Analysis and Simulation of Comput. and Telecomm. Systems,
August 2010, pp. 172–181.

[9] M. Thoppian, S. Venkatesan, H. Wu, R. Prakash, N. Mittal, and J. Ander-
son, “Improving Performance of Parallel Simulation Kernel for Wireless
Network Simulations,” in Proc. of the 2006 IEEE Conference on Military
Comm., 2006, pp. 2516–2521.

424424424

