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ABSTRACT
Whether a given simulation model of a computer network
will benefit from parallelization is difficult to determine in
advance, complicated by the fact that hardware properties
of the simulation execution environment can substantially
affect the execution time of a given simulation. We describe
SONSim, an approach to predict the execution time based
on a simulation of an envisioned distributed network simula-
tion (second-order simulation). SONSim takes into account
both network model characteristics and hardware proper-
ties of the simulation execution environment. To show that
a SONSim prototype is able to predict distributed perfor-
mance with acceptable accuracy, we study three reference
network simulation models differing fundamentally in topol-
ogy and levels of model detail – simple topologies comprised
of interconnected subnetworks, peer-to-peer networks and
wireless networks. We evaluate the performance predic-
tions for multiple configurations by comparing predictions
for the three reference network models to execution time
measurements of distributed simulations on physical hard-
ware using both Ethernet and InfiniBand interconnects. In
addition, utilizing the freedom to vary simulation hardware
and model parameters in the second-order simulation, we
demonstrate how SONSim can be used to identify general
model characteristics that determine distributed simulation
performance.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling Techniques; I.6.1 [Computing Method-
ology]: Simulation Theory—Model Classification;
I.6.5 [Computing Methodology]: Model Development—
Modeling Methodology ; I.6.8 [Computing Methodology]:
Types of Simulation—Parallel, Distributed, Discrete Event
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1. INTRODUCTION
Simulation is used to investigate computer networks that

are both difficult to model analytically and that cannot be
examined physically. However, accurate simulation of com-
plex and large networks is time-consuming, creating the need
for performance improvements. Parallel and distributed sim-
ulation can potentially reduce runtime by distributing the
computational load to multiple processors connected by a
network or by shared memory. However, the benefit of par-
allelization of network simulations described in the literature
varies: in some cases, a substantial reduction of runtime
and near-linear scaling with the number of processors was
achieved [12, 24]. In other cases, only limited speedup was
observed compared to sequential simulation, or performance
gains did not scale beyond modest numbers of processors [16,
22]. Development of an efficient parallel implementation
of a simulation is both time-intensive and error-prone [3].
Therefore, to avoid unnecessary effort, the benefit obtained
by parallelization of a simulation should be evaluated prior
to implementation. Additionally, there is a need to recon-
sider the performance of distributed simulations with respect
to modern elastic execution environments exemplified by
infrastructure-as-a-service offerings [31]. Particularly when
considering usage-based billing, the issue of choosing an effi-
cient scale for distributed simulations becomes a critical one.
Furthermore, a general classification of network models ac-
cording to their parallelization potential would be helpful.

In this paper, we describe SONSim (second-order net-
work simulation), an approach to predict the benefit gained
through parallelization of simulations of computer networks.
Based on information gathered during the runtime of an ex-
isting sequential simulator, SONSim simulates distributed
execution on sets of interconnected processors, factoring in
both properties of the simulated network and the hardware
to be used for simulation. We refer to simulation of a simu-
lation as second-order simulation.

The SONSim approach is a first step to attack the prob-
lem of deciding whether the effort for parallelization of a
discrete-event network simulation is justified, based solely
on properties of an existing sequential simulator and mea-
surements of the network the simulation is to be executed
in. Additionally, if a sufficient benefit cannot be expected
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for a given model, SONSim predicts the impact of modi-
fications to the network model and to the hardware used
on distributed simulation performance. More generally, by
allowing modelers to vary properties of a network model
and the hardware, SONSim will help determining not only
whether a given simulation will benefit from parallelization,
but can also give hints towards why this is the case.

Utilizing SONSim’s performance predictions and the abil-
ity to vary key model parameters, we present examples on
how SONSim can enable more general statements on the
potential of classes of network models for parallelization.

The rest of the paper is structured as follows. In Section 2,
we discuss related work. Section 3 describes the methodol-
ogy underlying SONSim’s operation and specifies the steps
required to obtain performance predictions as a basis for in-
vestigating performance characteristics of computer network
models. Section 4 characterizes the experiments conducted.
Section 5 discusses the results and the prediction accuracy.
In Section 6, we investigate the distributed performance of
simulations under varying model detail, lookahead and simu-
lation scale, demonstrating the usage of SONSim for making
more general statements about the distributed performance
of network simulations. Finally, Section 7 gives a summary
of our work.

2. RELATED WORK
The performance of parallel and distributed simulations

has been the focus of intensive research for over twenty
years. In the past few years, there has been a renewed in-
terest in performance investigation of parallel applications
in general [14, 27] and parallel and distributed simulations
in particular [10, 31], as current multi-core and many-core
architectures make parallel processing not a preference, but
a requirement for steady increases in computational perfor-
mance [29]. Our focus is on discrete-event simulations char-
acterized by system state which is manipulated by events
scheduled at discrete points in simulated time, focusing on
conservative synchronization where simulation correctness is
ensured at all times by a synchronization algorithm.

Existing works in the field of performance prediction for
parallel and distributed simulations can be grouped into
three categories: measurements, analytical modeling and sim-
ulation. As we focus on the performance resulting from in-
teractions between properties of the simulated networks and
the hardware used to run the simulation, we disregard the
wide range of work studying the performance of specific syn-
chronization algorithms and simulator implementations for
this overview.

First, measurements have been widely used to determine
the potential and real-world benefits of parallel discrete-
event simulations [5, 18, 23] with respect to specific hard-
ware, simulator implementations and synchronization algo-
rithms. Bagrodia et al. [2] described a performance evalua-
tion method for comparing synchronization algorithms. An
execution trace is generated during runtime of a sequential
simulator and subsequently used to guide a parallel simula-
tion. The execution trace allows for global knowledge of the
simulation progress and enables perfect synchronization. In
a recent work, De Munck et al. [10] studied the performance
of parallel and distributed simulations in modern multi-core
environments using traditional synchronization algorithms
and proposed hybrid and adaptive algorithms to reduce syn-
chronization overheads. The algorithms were evaluated with

reference to simulation runs based on execution traces. In
our work, guided parallel runs on physical hardware are also
used for the evaluation of SONSim’s prediction accuracy.
However, for the performance prediction itself, instead of
executing a simulation using physical hardware, SONSim
simulates the execution. Therefore, a parallel implementa-
tion of the simulator is not required and properties of the
simulation model and the hardware used for the simulation
can be varied easily.

Second, ideally, the system under study can be accurately
modeled analytically, allowing for mathematical predictions
of distributed performance. Critical path analysis [7] is a
common analytical approach which determines the paral-
lelism inherent in a simulation based on an event precedence
graph representing event interdependencies. Critical path
analysis determines an upper bound for the speedup achiev-
able for a given simulation model using conservative syn-
chronization, but in contrast to SONSim does not explicitly
consider the hardware in use.

Some works combine measurements and analytical con-
siderations to perform performance predictions. Gianni et
al. [13] utilize knowledge of the hardware to be used and
design-time information about the model to conduct predic-
tions based on queuing networks. In 1999, Liu et al. [19]
used microbenchmarks performed on physical hardware as
a basis for back-of-the-envelope calculations to give surpris-
ingly accurate predictions of parallel performance. In gen-
eral, due to the complex interactions between real-world
models and the used hardware, mathematical performance
analysis is only feasible with reasonable effort when apply-
ing simplifications, resulting in a trade-off to be made be-
tween performance prediction accuracy and analytical effort.
Like critical path analysis, SONSim employs simplifications
to help understand a model’s inherent parallelism without
being closely tied to hardware specifics. However, as the
hardware used for the distributed simulation does have sub-
stantial impact on performance, we consider it explicitly.

Third, simulative approaches base their predictions on
measurements performed during simulator runs on physi-
cal hardware in combination with subsequent simulations of
the parallel simulation under study. These approaches are
similar in nature to performance prediction methods for gen-
eral applications [6]. However, the discrete-event paradigm
limits the entities and activities involved in modeling par-
allel simulations, allowing for less complex models. As in
the existing works using simulative approaches for perfor-
mance prediction of parallel simulations, we use traces of
sequential simulation runs to guide the predictions. Using
this approach, both hardware and system model characteris-
tics are reflected in performance predictions and can be var-
ied easily, enabling an exploration of the parameter space.
In [15] and [26], toolkits for performance predictions of high-
performance parallel scientific codes are presented. While
closely related to our work methodically, the authors focus
on highly detailed modeling of the hardware and do not
share our goal of a more generalized comprehension of per-
formance potentials of computer network models which is re-
flected by SONSim’s more abstract hardware model. Ewald
et al. [11] presented another approach to performance pre-
diction of parallel simulations, not relying on traces. Their
goal, however, is the performance evaluation of parallel sim-
ulators and of the synchronization algorithms used instead of
investigating model characteristics relevant to parallel per-
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Figure 1: Levels of abstraction in modeling of sim-
ulations.

formance. Existing works with intents and abstraction levels
closer to ours seem to lack a thorough evaluation for mul-
tiple simulation models and hardware environments. While
Swope et al. [30] give no evaluation of prediction accuracy,
both Perumalla et al. [21] and Juhasz et al. [17] compare
performance predictions to physical simulator performance
for a single specific simulation model and hardware plat-
form. We evaluate SONSim’s predictions with reference to
measurements made for three fundamentally differing dis-
tributed network simulations running on physical hardware
linked by two modern and commonly used interconnects:
Ethernet and InfiniBand. With respect to modeling detail
and intent, SONSim lies between performance models with
coarse abstractions such as critical path analysis and highly
detailed simulative models.

In summary, our performance model considers the simu-
lation execution hardware more closely than analytical meth-
ods, yet in contrast to related work using measurements or
simulative approaches employing detailed hardware models
is not tied to specific simulator implementations or low-level
hardware specifics. Therefore, we argue that SONSim en-
ables reasonably accurate predictions, but at the same time
is abstract enough to allow us to focus on identifying funda-
mental performance characteristics arising from properties
of the investigated network simulation models.

3. PERFORMANCE PREDICTION
METHODOLOGY

In this section, we describe the methodology used by SON-
Sim to obtain performance predictions. Based solely on in-
formation gathered from an existing sequential simulator
and simple network measurements, SONSim predicts the
performance of a distributed implementation of the simu-
lator, enabling decisions on whether parallelization of a sim-
ulation will give a performance benefit. In addition, we dis-
cuss the effort required to apply our prototypical implemen-
tation to existing simulators.

3.1 Levels of Abstraction
Figure 1 illustrates the levels of abstraction involved in

simulating a distributed simulation. The original existing
or envisioned system under study (e.g. a network of com-
puters) is abstracted from by means of a first-order model.
The executable implementation of the first-order model is
the first-order simulator whose performance we intend to
investigate. To this end, a model of the state and behavior
of the first-order simulator is created. The resulting second-
order model is implemented in a corresponding second-order
simulator.

As we are concerned with network simulation, for us the
original system under study is a network of computers which
we will refer to as the network under study . We contrast

Figure 2: Data flow during performance prediction.

the network under study with the network a distributed
first-order simulator is executed in, which in the following
we will refer to as the execution network .

3.2 Prediction Process
We will now describe the concrete sequence of activities

performed to obtain performance predictions (cf. Figure 2).

1. The existing sequential first-order simulator is exe-
cuted multiple times for a given scenario to deter-
mine the average sequential runtime as a reference for
speedup calculation.

2. The sequential first-order simulator is instrumented to
perform time measurements for execution of individual
event types and to generate an execution trace. The
execution trace contains the sequence of event execu-
tions including event timestamps and the mapping of
individual events to nodes of the network under study
in the first-order simulation, as well as the sequence
of events being created during simulation. The instru-
mented sequential simulator is executed to obtain the
execution trace. Note that the sequential run in step
1. is performed without tracing to avoid overheads.

3. As a basis for predicting the network overhead involved
in the distributed simulation, we measure the average
time required for individual message transfers in the
execution network.

4. Finally, after supplying the execution network mea-
surements, a partitioning of the first-order network
model and the execution trace to the SONSim im-
plementation, a performance prediction for the dis-
tributed first-order simulation is obtained.

3.3 Deployment
Our approach can be applied to existing discrete-event

simulators easily if the simulator source code is available.
Step 2. of the prediction process (cf. 3.2) requires instru-
mentation of the event handling code in the simulator with
simple timing calls. In a discrete-event simulator, event han-
dlers are usually implemented as a separate procedure per
event type. Hence, the placement of timing calls poses no
substantial difficulty. All subsequent steps are simulator-
agnostic. Our prototypical implementation of SONSim with
the code used for validation is available from our web site1.

3.4 First-Order and Second-Order Model
In this section, we describe the entities constituting the

first-order and second-order models used by SONSim. Both
first-order and second-order model are based on the famil-
iar discrete-event modeling paradigm. Discrete-event mod-
els are composed of two types of entities: system objects

1http://dsn.tm.kit.edu/english/3367.php
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describing the system state and timestamped events mod-
eling state changes at set points in simulated time [4]. In
a distributed simulation, system objects are distributed to
multiple interconnected machines. The simulator instances
handling a subset of all system objects are called logical
processes (LPs). Consistent with this modeling approach,
networks under study are commonly reflected by first-order
models as follows.

• System objects represent the nodes in the network
under study.

• Events model transmissions and receptions of packets
by individual nodes.

• Logical processes run on nodes of the execution net-
work, each storing a number of system objects and
executing events pertaining to these system objects.

Applying the same modeling pattern again, we represent
state and behavior of the distributed simulation in a sequen-
tial second-order simulation as follows.

• System objects represent the logical processes of the
first-order simulation.

• Events model activities performed by individual log-
ical processes in the distributed simulation: execution
network operations and execution of first-order events.

• As the second-order simulator itself is executed sequen-
tially, only a single logical process is executed on the
physical hardware.

To be able to predict the runtime of first-order simula-
tions, a model of the operations executed by each logical
process of a first-order simulator is required. A sequential
discrete-event simulator operates in a simple loop: all events
to be executed are stored in a queue. In each step, the event
with the lowest timestamp is executed and removed from the
queue. If the execution of the event triggers the creation of
further events, the newly created events are added to the
queue. With the addition of the execution network opera-
tions, we model each logical process’ behavior as illustrated
by the execution loop listed in pseudo code in Algorithm 1.

Algorithm 1 Model of the execution of each logical process
as a basis for runtime prediction.

repeat
repeat

if event incoming then
receive event
enqueue event

end if
until no event received
execute next event
if new events created then

enqueue locally or transfer to remote logical process
end if

until no events left

The distributed execution loop extends the basic sequen-
tial discrete-event logic in two ways: first, before proceed-
ing with execution of the next local event, logical processes
probe for incoming events sent by other logical processes.
Second, if a newly created event pertains to a system ob-
ject handled by a remote logical process, the event is trans-
ferred to the remote logical process. Reception, execution
and transfer are each associated with a runtime cost, which
is added to simulation runtime for the corresponding logical

process. The sum of these costs corresponds to the pre-
dicted runtime for the logical process. The maximum of the
predicted runtimes among all logical processes is SONSim’s
prediction for the total distributed simulation runtime.

3.5 Second-Order Simulator Operation
In this section, we describe SONSim’s operation, detail-

ing the mapping of first-order to second-order simulation
events. When supplied with an execution trace of a first-
order simulation, measurements of the execution network
and a partitioning of the model, the second-order simula-
tor loads the execution trace and translates all initial first-
order events to second-order events. There are three types
of second-order events, corresponding to the operations per-
formed in the first-order simulator execution loop: Execu-
tion of an event by a logical process, Transfer of an event
to another logical process and Reception of an event via the
execution network. SONSim operates by executing second-
order events in timestamp order until no events are left in
the queue. Each second-order event extends the position
in simulated time according to the time measurements used
as input to SONSim. On termination of the second-order
simulation, the final position in simulated time represents
SONSim’s prediction of the first-order simulation runtime.
In the second-order simulation, the second-order events are
associated with the following operations.

• Execution: simulate creation of additional first-order
events, if triggered by the event modeled. If a newly
created event is associated with a system object han-
dled by a remote logical process, a second-order Trans-
fer event is scheduled for the remote first-order logical
process.

• Transfer: respecting the target first-order logical pro-
cess’ state, find the arrival time of the first-order event
at the target logical process and schedule a second-
order Reception event at this point in simulated time.

• Reception: schedule an Execution event for the first-
order logical process associated with the Reception event,
respecting the remaining time required for all Recep-
tion and Execution events already scheduled.

All idle times between second-order events are considered to
be spent on probing for incoming messages.

Since each logical process can receive events with arbi-
trary timestamps from other logical processes, explicit syn-
chronization using an appropriate algorithm is required to
maintain timestamp order. A common synchronization al-
gorithm for parallel and distributed discrete-event simula-
tions is the Chandy-Misra-Bryant algorithm [8, 9]. The al-
gorithm is based on the notion of the lookahead, which we
will use to denote the distance in simulated time from the
last executed event of a logical process to the timestamp
of the earliest new event that may be transferred to a re-
mote logical process. The lookahead can be used to identify
which events can be executed safely without violating times-
tamp order. After a second-order simulation run, SONSim
returns two pieces of information: First, the runtime of the
envisioned distributed simulation using the configured execu-
tion network hardware, simulation model and partitioning.
Comparing this value to the measured sequential runtime,
we can predict the benefit of parallelization. Second, a dis-
tributed simulation schedule allowing for examination of the
first-order logical processes’ interactions during execution.
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3.6 Step-by-Step Analysis
In this section, we discuss the aspects of the performance

of distributed simulations we will focus on in turn, motivat-
ing which performance-related characteristics need to be in-
vestigated in each of our experiments. The most important
questions about a simulation model that can be answered
using SONSim can be summarized as follows: 1. Does the
simulation model in itself exhibit a sufficient level of par-
allelism? 2. How well must the parallelism in the model
be understood at simulation runtime to achieve a speedup?
3. What is an efficient simulation scale with respect to the
number of logical processes to distribute the simulation to?

To address question 1., we need to determine upper per-
formance bounds enabled by the parallelism in the simu-
lation model without considering specific synchronization
algorithms. Therefore, we will first assume infinite looka-
head. As in [2], for experiments with infinite lookahead,
synchronization is achieved by providing knowledge of all
events in the simulation to all logical processes based on an
execution trace created by the sequential first-order simu-
lator, allowing logical processes to execute events as soon
as possible without violating timestamp order per system
object. In Section 6.2, we will proceed to demonstrate how
SONSim is used to answer question 2. by investigating the
performance of simulation models with synchronization un-
der various amounts of lookahead. We demonstrate how to
address simulation scale (question 3.) in Section 6.3.

4. EXPERIMENTS
The accuracy of the predictions made using SONSim was

evaluated by comparing performance predictions to mea-
surements of distributed simulation runs on physical hard-
ware. We implemented three network models in a basic
discrete-event simulation engine built from scratch, support-
ing sequential and distributed runs in an execution network.

The evaluation process is comprised of the following steps
(cf. Section 3.2): 1. We measure the sequential runtime of
a simulation executed on physical hardware. 2. An exe-
cution trace is gathered during a sequential simulation run
on physical hardware. 3. The time required for individual
network operations is measured in the execution network.
4. Supplied with the information from the previous steps,
SONSim predicts the distributed performance. Finally, we
supply the execution trace to the distributed implementa-
tion of the simulator created for evaluation to obtain a mea-
surement of the simulation performance on physical hard-
ware in the execution network. By comparing predicted and
measured simulation performance, the prediction accuracy
is evaluated.

We perform evaluation in two different execution networks,
using up to six nodes for simulation: first, a cluster equipped
with Intel Xeon E5504 processors operating at 2.00GHz in-
terconnected using GBit/s Ethernet. Communication is per-
formed using TCP. Second, a high performance comput-
ing cluster equipped with Intel Xeon E5540 processors at
2.53GHz interconnected using InfiniBand 4X QDR.

4.1 Considered Network Models
We base our experiments on three specific models of net-

works under study. The models are characterized by three
properties: the simulated network topologies, the commu-
nication patterns between nodes and the level of detail in
the modeling of the networking stack. Packet-level network

models use packets as the smallest unit of consideration,
modeling packet loss using probabilistic methods. In con-
trast, signal-level network models accurately consider effects
of the physical channel on packet transmissions. In general,
more detailed modeling of the networking stack translates
to events that are more computationally intensive and as-
sociated with larger amounts of data. As even for small
simulations, it is not clear to what extent specific types of
network models benefit from parallelization, we limit our ex-
periments in this work to distributed simulations using up
to six logical processes simulating up to 1000 nodes.

Of course, the topologies of the considered networks un-
der study display high degrees of symmetry with obvious
partitionings of the models to logical processes. For more
asymmetrical topologies and communication patterns, it is
necessary to seek workload distributions tailored to the given
topology and communication patterns, which for large sim-
ulation is a non-trivial problem. While out of scope for this
paper, SONSim can already be used to guide efficient parti-
tioning of models by repeating performance predictions for
multiple candidate partitionings generated manually or us-
ing existing graph partitioning toolkits.

The following three network models were implemented in
the first-order simulator to be run on physical hardware se-
quentially and in parallel.

1. Interconnected Campus Networks: As a baseline
with respect to event sizes and computational demands, we
study a packet-level model with a simple topology composed
of a set of so-called campus networks, which can be used
as building blocks to construct larger and more complex
topologies [12]. A campus network is comprised of a set
of nodes, each connected to a shared router. Larger net-
works are constructed by interconnecting multiple campus
network routers. The communication patterns in the net-
work can be influenced by configuring the amount of traffic
between campus networks (cross-traffic) in relation to traffic
within campus networks.

2. Peer-to-Peer Networks: Models of peer-to-peer net-
works are regarded as benefitting particularly little from par-
allel simulation [22]. We base our investigation of peer-to-
peer models on the packet-level model used for the intercon-
nected campus networks. However, in contrast to the clearly
defined communication patterns given by the structure of
the campus network topology, we simulate a worst case sce-
nario with respect to simulation partitioning: as must be as-
sumed by any parallel simulator without far-reaching knowl-
edge of the peer-to-peer protocol and simulation model in
use, a node can send a packet to any other node at arbitrary
points in simulated time. The scenario is close in behavior
to simulations of peer-to-peer networks with low-traffic node
interactions such as distributed hash tables.

3. Wireless Networks: The substantial computational
demands induced by the signal processing required to em-
ulate the physical layer render signal-level wireless network
simulation an obvious target for efforts to reduce runtime
through parallelization [1]. Due to the demanding signal
processing required, signal-level models can be considered
extreme cases with respect to event data sizes and process-
ing times in network simulations. In contrast to the previous
network models, the broadcast nature of the wireless chan-
nel requires all nodes in the proximity of a sender to process
each transmitted frame. For our experiments, we extracted
the signal processing procedures from PhySimWifi [20], an
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Table 1: Execution network measurements and event execution times from sequential simulation runs with
95% confidence intervals for the three networks under study.

Operation
Ethernet InfiniBand

Campus Peer-to-Peer Wireless Campus Peer-to-Peer Wireless

MPI Transfer fit function fit function 1.72±0.05µs 85.08±4.11µs
MPI Reception 0.36±0.01µs 12.97±0.12µs 0.39±0.01µs 72.07±3.53µs
MPI Probing 0.61±0.02µs 0.60±0.00µs 0.37±0.00µs 0.39±0.03µs
Send Event 3.08±0.00µs 3.26±0.02µs 997.25±13.87µs 3.07±0.03µs 3.25±0.02µs 933.17±64.60µs

Receive Event 0.91±0.00µs 0.87±0.01µs 8085.21±7.67µs 1.07±0.01µs 1.09±0.03µs 12291.92±538.51µs
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Figure 3: Time used per MPI transfer operation for
24 bytes of data depending on inter-transfer time in
the Ethernet environment.
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Figure 4: Time used per MPI transfer operation for
51204 bytes of data depending on inter-transfer time
in the Ethernet environment.

IEEE 802.11 physical layer extension to the popular network
simulator NS-3 [25].

4.2 Measuring Execution Network Overhead
For communication within the execution network, our dis-

tributed simulator implementation uses the Message Passing
Interface (MPI) [28]. In the Ethernet environment, Open-
MPI 1.4.1 was used, the InfiniBand experiments used HP
MPI 02.03.01.00.

In order to measure the time required for MPI calls in the
distributed simulator (MPI Send, MPI Recv, MPI Iprobe),
we implemented a simple MPI benchmark. The benchmark
transfers a number of messages between a single sender and
receiver, measuring the time used for each library call. Ta-
ble 1 lists the time required for individual reception and
probing operations for the packet-level and signal-level mod-
els with 24 and 51204 bytes of data per event, respectively.

In the Ethernet environment, we observed a substantial
dependence of MPI transfer operation times on the delay
between individual transfers between a given sender and re-
ceiver pair (inter-transfer time). To generate a basic model
for the time required for transfer operations in our SONSim
prototype, we applied simple curve fitting between inter-
transfer times and MPI transfer operation durations in the
Ethernet environment. Figures 3 and 4 depict the transfer
times measured for the packet-level and signal-level models,
varying inter-transfer times and the fit functions approx-
imating the relationship between the two metrics. Given
the inter-transfer time x, we get a close fit to the transfer
time per message for the packet-level models using a func-

Table 2: Deviation of speedup predictions from mea-
surements for the campus network (CN), peer-to-
peer (P2P) and wireless network (WN) models.

Ethernet InfiniBand
CN P2P WN CN P2P WN

Min. 3.2% 12.8% 18.3% 10.7% 34.8% 15.0%
Max. 17.1% 24.8% 19.6% 38.6% 38.6% 18.9%
Avg. 9.5% 18.0% 19.0% 21.5% 37.3% 16.3%

tion of the form a/bx + c with a = −131.235, b = 11.1845
and c = 13.2387. For the signal-level model we approxi-
mate the transfer times using the fit function mx + c with
m = 0.0131651 and c = 36.2832. SONSim is supplied with
the fit functions to predict execution network overheads de-
pending on the inter-transfer time for each individual trans-
fer operation. In the InfiniBand environment, transfer times
did not vary significantly depending on inter-transfer times,
allowing us to use averaged measured transfer times.

5. RESULTS AND DISCUSSION
We contrast the predicted speedup of distributed simula-

tions compared to sequential runs with the speedup for dis-
tributed simulations performed in the execution networks.
Table 2 lists the deviations between predictions and mea-
sured runtimes averaging over ten runs for each configura-
tion. 95%-confidence intervals corresponded to 1.72% of to-
tal runtime on average.

Figures 5 and 6 depict the prediction and measurement
results from physical simulation runs in the Ethernet and
InfiniBand environments of the campus network model for
two up to six logical processes. As distributed performance
for the campus network model depends strongly on the pro-
portion of cross-traffic between campus networks, we choose
two levels: 10% and 50%. In the Ethernet environment,
there is a close match between predicted speedup and mea-
surement results, with an average deviation of 9.5% and a
maximum deviation of 17.1% over all parameterizations. In
the InfiniBand environment, we observed an average devi-
ation of 21.5% and a maximum deviation of 38.6%. We
measured a speedup factor of up to 3.18 using Ethernet and
4.27 for the InfiniBand interconnect. Given the predicted
speedups of 3.68 and 4.78, a user would likely, and correctly,
decide upon parallelization of the simulation.

For the peer-to-peer model (cf. Figure 7), we observed
average prediction errors of 18.0% and 37.3%, respectively.
The maximum deviation in the Ethernet environment was
24.8%, compared to 38.6% for InfiniBand. Parallel simula-
tions using the InfiniBand interconnect achieve speedups of
up to 2.55 compared to 1.16 for Ethernet, suggesting that
parallelization in the InfiniBand environment would give
some benefit. In the Ethernet environment, however, dis-
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Figure 5: Evaluation of prediction accuracy for the
campus network model depending on the number of
logical processes and campus networks for two levels
of cross-traffic in the Ethernet environment.
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Figure 6: Evaluation of prediction accuracy for the
campus network model depending on the number of
logical processes and campus networks for two levels
of cross-traffic in the InfiniBand environment.

tributed simulation with up to six logical processes is barely
worthwhile, even assuming infinite lookahead. Based on
speedup predictions of 3.51 and 1.44, we assume that a user
of SONSim would come to the same conclusions.

In contrast to the results for the campus network and peer-
to-peer network models, prediction accuracy for distributed
simulations of the wireless network model (cf. Figure 8) is
comparable between Ethernet and InfiniBand interconnects.
We observed average deviations of 19.0% and 16.3%, and
maximum deviations of 19.6% and 18.9%, respectively. The
higher prediction accuracy compared for the wireless model
is explained by its high computational demands. As net-
work overheads make up a substantially lower proportion of
the runtime, the impact of inaccuracies in the prediction of
network overheads is less pronounced. Measured speedups
are slightly lower for Ethernet, with a maximum speedup of
4.25 compared to 4.77 for InfiniBand. Again, given predicted
speedups of 5.06 and 5.67, a user would likely decide upon
parallelization and achieve performance gains as expected.

Considering all experiments, we observe that predictions
are consistently overly optimistic. The limitation in predic-
tion accuracy is caused by an underestimation of execution
network overheads by SONSim which reduces predicted run-
time. As increasing the number of logical processes reduces
the event execution time for each logical process, inaccu-
racies in the predictions for the network overhead gain in
impact. Therefore, for larger numbers of logical processes,
final prediction accuracy decreases. In future work, we will
integrate an existing and more detailed execution network
model in SONSim, which we hope will further improve pre-
diction accuracy.

As a basis for discussing the sufficiency of SONSim’s pre-
diction accuracy, we compare our results to the related work
discussed in Section 2 with comparable intent and level of
modeling detail to SONSim. Juhasz et al. [17] evaluated
their performance prediction tool with respect to a single un-
specified simulation model and in a single execution network,
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Figure 7: Evaluation of prediction accuracy for the
peer-to-peer network model depending on the num-
ber of logical processes.
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Figure 8: Evaluation of prediction accuracy for the
wireless network model depending on the numbers
of logical processes and nodes.

noting that for low event processing times, diminishing pre-
diction accuracy was observed. Prediction errors were below
15% for five or less logical processes, with deviations of up to
66% for six and seven logical processes. In [21], Perumalla
et al. evaluate performance predictions for a physics simula-
tion model in a single execution network, achieving predic-
tion errors of about 10% to 20%. Perumalla et al. point out
that for the purpose of performance predictions, some devia-
tion can be tolerated. As substantial performance gains are
required to justify the implementation effort for paralleliza-
tion of a model, even SONSim’s maximum observed predic-
tion error of 38.6% in the InfiniBand environment might still
be acceptable for making informed decisions on paralleliza-
tion. Hence, we consider SONSim’s prediction accuracy an
acceptable starting point for its intended purpose. Never-
theless, especially with regard to large execution networks,
integrating an established and more accurate model of the
execution network is a focus of our ongoing work.

6. UNDERSTANDING
SPEEDUP POTENTIALS

Having evaluated strengths and limitations of SONSim’s
predictions, we demonstrate the performance statements that
can be made using SONSim. As model and hardware pa-
rameters can be varied easily in the second-order simulation,
general statements about a network models potential for
parallelization depending on the parameters can be made.
We show this usage of SONSim by varying the degree of
modeling detail, the lookahead and the simulation scale and
examine the effects on distributed simulation performance.

6.1 Impact of Modeling Detail
As a first example, based on the observation that higher

levels of modeling detail are typically reflected by more com-
putationally intensive events, we vary the execution time per
event for the three reference network models to investigate
the impact of the level of detail in the model of the network
under study on the distributed simulation performance.
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Figure 9: Predictions for the speedup by distributed
simulation of the three network models using two
logical processes in the Ethernet environment, vary-
ing processing times per event.

Figure 9 shows SONSim’s speedup predictions for dis-
tributed simulations using two logical processes in the Ether-
net environment. For the campus network model with 50%
of cross-traffic, a performance gain is achieved for events as-
sociated with processing times larger than about 4µs, not
adjusting for SONSim’s current overestimation of speedups.

Similar to the predictions for the campus network model,
a modest increase in processing time for each event suffices
to make distributed simulation of the peer-to-peer model
worthwhile even for only two logical processes. This indi-
cates that with sufficient lookahead, distributed simulation
of peer-to-peer networks could have a substantial benefit.
However, achieving large lookahead can be difficult depend-
ing on the network protocols modeled. In 6.2, we will demon-
strate how SONSim can be used to examine how much looka-
head is required for specific types of network models.

Even for the wireless model, where events are associated
with 51204 bytes of data each compared to 24 bytes for
the packet-level models, considerable speedup is achieved
for comparatively low processing times per event. This is
remarkable considering that for every frame transmitted in
the wireless network under study, an event is transferred in
the execution network.

Based on the prediction results, we note the clear dif-
ference in event processing times required for performance
gains through parallelization between the packet-level and
signal-level network models and identify event processing
times as an obvious influencing factor to distributed perfor-
mance. In our future work, we intend to conduct a system-
atic study of the influencing factors to establish a classifica-
tion of computer network models according to their paral-
lelization potential.

6.2 Impact of Model Lookahead
It is well-known that distributed simulation performance

is highly dependent on the amount of lookahead available in
the given model. As discussed briefly in Section 3.5, looka-
head describes the amount of simulated time for which a
logical process will not send any new events to remote logi-
cal processes, which for all other logical processes is closely
related to the amount of simulated time for which it is safe
to execute events from the local queue. The upper bound
for the amount of lookahead that can be extracted from a
network model depends on properties such as the topology
of the simulated network, link latencies, communication pat-
terns and the considered network protocols. Some amount of
lookahead can be extracted statically based on knowledge of
the model of the network under study, e.g. using the known
minimum message latency between nodes simulated on dif-
ferent machines of the execution network. If more lookahead

is required for reasonable performance, the simulator can dy-
namically calculate the lookahead depending on the state of
the simulated system at a given point in time. This calcu-
lation may be quite expensive depending on how deeply the
system state must be examined. Hence, dynamic calculation
of the lookahead carries a tradeoff between the amount of
processing time spent on lookahead maximization and the
performance gains resulting from larger lookahead values.
Besides guiding decisions on how much computational and
developmental effort should be expended on determining the
maximum lookahead value, SONSim can help answering the
more general question ”How much lookahead is required for a
distributed simulation of the given model to perform well?”.

In our description of the lookahead experiments we loosely
follow the terminology of Bagrodia et al. [2].

• Lookahead : the lowest possible delta between the times-
tamp of the event currently executed by a logical pro-
cess and the timestamp of any locally created event to
be executed on another logical process.

• Earliest Conditional Output Time (ECOT ): for each
logical process, the ECOT is the earliest possible times-
tamp of a locally created event to be executed on an-
other logical process.

• Earliest Input Time (EIT ): for each logical process,
the EIT is the earliest possible timestamp of an event
which will be received from another logical process. A
lower bound for the EIT can be determined from the
minimum of all other logical processes’ ECOTs.

To perform lookahead experiments, SONSim’s behavior
was extended as follows.

• After a logical process has executed an event, the log-
ical process determines its ECOT and stores it in a
variable accessible to all other logical processes. For
the example presented here, the ECOT is chosen as
the sum of the timestamp of the event executed in this
step and a fixed lookahead value.

• Before executing an event, a logical process determines
the EIT, which is the minimum of all remote ECOTs.
All events with timestamps lower than the minimum
ECOT are considered safe to execute. If no such event
exists, the logical process waits.

• If all logical processes are waiting for the EIT to ad-
vance beyond the timestamp of any of the events in the
local queue, the simulation is deadlocked. Deadlocks
are resolved using a simple policy: all logical processes
advance their ECOT to the timestamp of the earliest
event in the queue, allowing the simulation to proceed.

In effect, SONSim’s behavior simulates an idealized ver-
sion of the Chandy-Misra-Bryant protocol disregarding over-
heads for signaling of ECOTs. We can now study the effects
of various quantities of lookahead in given network models
by varying the lookahead and predicting the performance of
the resulting distributed simulations.

Figure 10 shows the predicted performance of distributed
simulations for the campus network model in the Ether-
net execution network using two logical processes. We in-
vestigated the performance for setups with very low looka-
head (5µs) up to very large lookahead (1s). The predicted
speedup by distributed simulation varies from 0.961 to 1.163
for 10% of cross-traffic and from 0.469 to 0.689 for 50% of
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Figure 10: Predictions for the speedup by dis-
tributed simulation of the three network models us-
ing two logical processes in the Ethernet environ-
ment, varying the amount of lookahead.

cross-traffic. For 1s of lookahead, the predicted speedups
closely approach the results measured under the assump-
tion of infinite lookahead in our validation (cf. Figure 5).
There is no discernible difference in the speedup between
5 and 500µs of lookahead. The reason is that for these low
amounts of lookahead, the simulation advances almost solely
due to deadlock resolution. The large increase in speedup for
1000µs of lookahead is explained by the spacing of 1000µs
between initial send events in our example simulation model.
As in many cases, the earliest next event to be executed by
a logical process lies 1000 µs in the future, lower lookahead
values tend to not allow us to be sure about the next event
being safe to execute, increasing the probability for wait-
ing and for deadlocks. Nevertheless, as there is no runtime
penalty for deadlock resolution in this experiment, speedup
values remain relatively large even for large numbers of dead-
locks. As can be seen by comparing the speedup for 1000
µs and 5000µs of lookahead and 10% of cross-traffic, larger
numbers of deadlocks can actually be beneficial to the pre-
dicted speedup if there is no overhead involved, as during
deadlock resolution, ECOTs are increased for all logical pro-
cesses. As an example, if we were to introduce a penalty of
10 µs for deadlock detection and resolution, the predicted
speedup for 5µs of lookahead would drop to 0.367 for 10%
of cross-traffic and to 0.256 for 50% of cross-traffic.

In summary, we note that – as expected – speedup predic-
tions vary substantially with varying amounts of lookahead,
especially when factoring in overheads for deadlock resolu-
tion. Of course, the largest investigated lookahead value of
1s cannot be expected for most real-world simulations with-
out deep insight into the simulation model during runtime,
and gaining this insight might be associated with high com-
putational demands in itself. However, knowledge about
what level of performance is to be expected for large looka-
head values can guide decisions on how much computational
and developmental effort should be expended on dynamic
lookahead maximization. Additionally, when investigating
classes of network models, the results might show that per-
formance would require unattainably large amounts of looka-
head, rendering parallelization of these classes of networks
models a futile endeavor.

6.3 Determining Simulation Scale
Given a simulation model which is known to lend itself to

parallelization, an appropriate simulation scale has to be se-
lected, as simulation performance may stagnate or degrade
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Figure 11: Predictions for the speedup by dis-
tributed simulation of the wireless network model
in the Ethernet environment, varying the number
of logical processes.

beyond a certain number of logical processes. Particularly
considering today’s highly scalable execution environments
such as cloud services employing usage-based billing, max-
imizing efficiency becomes an important issue. By varying
the number of logical processes in a simulation, we demon-
strate how SONSim can help determining scalability limits
of network models for given hardware environments. As an
example, Figure 11 shows the predicted speedup by paral-
lelization of simulations of the wireless network model in the
Ethernet environment for simulations of 64 and 128 nodes.
As we can see, for 64 nodes, predicted speedups scale close
to linearly for up to 32 logical processes, with a predicted
speedup of 31.85. Beyond 32 logical processes, diminishing
returns are observed due to the increasing influence of ex-
ecution network overheads. As the speedup for 64 logical
processes is only 32.21, more than 32 logical processes are
not useful in this scenario. For simulations of 128 nodes, per-
formance scales slightly worse, with a speedup of 26.20 for 32
logical processes. Using 64 logical processes, the predicted
speedup increases only slightly to 30.52. As the predictions
are based on the basic model of the execution network im-
plemented in the SONSim prototype, we assume the results
shown to only give rough estimates for large and congested
execution networks. Reliable prediction of optimal simu-
lation scale will be addressed based on the more detailed
modeling of the execution network overheads as part of our
future work, which will allow for simulation scale to be in-
cluded in our model classification.

7. CONCLUSION
We presented SONSim, an approach towards performance

evaluation of distributed simulations of computer networks.
SONSim predicts the performance of distributed discrete-
event network simulations to determine whether paralleliza-
tion of an existing sequential simulator is worth the required
development effort. In addition, by varying model parame-
ters, SONSim’s predictions can help identifying the network
model and hardware characteristics limiting simulation per-
formance. We demonstrated this usage by varying the com-
putational intensity, the available lookahead and the simula-
tion scale for three models and predicting the effect on dis-
tributed performance. The prediction accuracy of our pro-
totypical implementation was evaluated for three common
network topologies simulated on two hardware platforms.

In our future work, we will extend and improve our proto-
typical implementation, in particular with respect to perfor-
mance prediction accuracy. We expect that building upon
an existing accurate model of the execution network will re-
sult in closer performance estimates for large simulations.
Our intention is to utilize SONSim to get a clear under-
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standing on which conditions are required for high perfor-
mance in distributed simulations of various simulated net-
work types and considering characteristics of existing model
implementations in common simulators. Ideally, the gained
understanding will enable us to establish a classification of
computer network models with respect to their potential for
parallelization.
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