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ABSTRACT
The benefits of distributing a network simulation depend
on characteristics of the simulated network. Performance
improvements reported in the literature are comparatively
low for peer-to-peer overlay networks in particular, as the
logical topology of these networks can necessitate frequent
synchronization between the processors executing the sim-
ulation. In this paper, we show that a speedup of up to a
factor of 6.0 using 16 nodes connected using InfiniBand and
close to linear reductions in memory usage are possible for
simulations of Kademlia-based networks. Our distributed
simulator implementation enables simulations of one of the
largest peer-to-peer networks at full scale of about 10 million
peers. Based on the two fundamental goals of minimizing
communication between processors and minimizing synchro-
nization overheads, we propose two strategies for assigning
simulated nodes to processors. We analyze the effects of the
two strategies and show that each strategy supports one of
the goals, while being detrimental to the other. We propose
efficiency metrics that expose how much of the potential for
parallel execution is exploited by a simulator. Through de-
tailed performance measurements and by applying the new
metrics to our simulator implementation, we quantify re-
maining efficiency potentials.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Parallel, Distributed, Discrete Event ; E.2 [Data Storage
Representations]: [Hash-Table Representations]

General Terms
Performance
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alistic assessment, the protocol may need to be applied to
simulations of networks at the scale of an envisioned or exist-
ing real-world deployment. However, the memory demands
of simulations of millions of network nodes can easily exceed
the resources available to individual processors. In addition,
by increasing the number of nodes in a simulated network,
the simulated traffic and hence the simulation runtime is
usually increased as well. Parallel and distributed network
simulation [13] is a common approach to reduce per-machine
memory requirements and simulation runtime by partition-
ing the simulated network and distributing the simulation
workload to a number of inter-connected processors. Each
processor involved in executing the simulation is assigned a
fraction of the simulated network nodes according to a par-
titioning scheme and simulates these nodes’ behavior. The
portion of the simulation handled by one processor is re-
ferred to as a logical process (LP). Communication between
LPs is required to reflect the interactions between nodes in
the simulated network. Additionally, to ensure that all ac-
tivities in the simulated network are performed in correct
order, synchronization is performed between LPs. Efficient
distributed simulation requires sufficiently large lookahead, a
metric determining the amount of simulated time by which
an LP can advance through the simulation without synchro-
nization. Both the required amount of communication be-
tween LPs and the synchronization overheads depend on
characteristics of the network to be simulated.

Recently, there has been an interest in classifying net-
works according their potential for parallel and distributed
simulation (e.g., [1, 31]), as for some types of networks, sub-
stantial runtime reductions through distributed simulation
are reported in the literature [14, 34], while for other types
of networks, the benefits are less pronounced [16, 33]. For
peer-to-peer overlay networks in particular, existing work
suggests that in many cases only limited runtime reductions
are possible [10, 33]. Overlay networks impose a logical
topology on top of a physical network, resulting in a distinc-
tion between physical and logical proximity of nodes. When
simulating physical networks, it can be possible to exploit
the spatial locality of the simulated traffic by assigning phys-
ically close nodes to the same LP. However, in overlay net-
works, traffic patterns follow the logical topology as opposed
to the physical topology. Therefore, an assignment of phys-
ically close simulated nodes to individual processors does
not necessarily result in low inter-processor interaction. If
an efficient assignment based on logical proximity cannot be
found instead, performance gains through distributed sim-
ulation remain low. Still, as peer-to-peer overlay networks

Simulation is commonly used for performance analysis in
the design and development of network protocols. For a re-
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in use today comprise millions of active nodes [12, 18, 35],
efficient means for simulation of these networks are needed.

In this paper, we show how networks based on the Kadem-
lia protocol can be simulated at the scale of real-world net-
works. Remaining efficiency potentials are investigated us-
ing novel metrics and through measurements of our high-
performance simulator implementation. Our main contribu-
tions are the following.

1. Partitioning Schemes for Kademlia-Based Peer-
to-Peer Networks: we show that, contrary to simulations
of physical networks, the two main optimization goals in
partitioning networks for distributed simulation, minimiza-
tion of inter-LP traffic and maximization of lookahead, are
not necessarily coupled for peer-to-peer overlay networks.
For Kademlia-based networks, we show that a partitioning
scheme based on the logical network topology can minimize
inter-LP traffic, while a location-based partitioning scheme
can increase the available lookahead.

2. Distributed Simulator and Performance Eval-
uation: through measurements using up to 16 LPs, we in-
vestigate the efficiency of our distributed simulator imple-
mentation for Kademlia-based peer-to-peer networks. Our
implementation is based on PeerSim1, a peer-to-peer net-
work simulator that in its sequential implementation scales
to up to 106 simulated nodes [29]. We show that the added
capability for distributed simulation increases the simula-
tor’s scalability so that a large Kademlia-based network,
the BitTorrent Mainline DHT [23], can be simulated at full
scale [18] of around 10 million peers. We make the simulator
code available to the community through our web site2.

3. Synchronization Efficiency Metrics: we propose
metrics to quantify the proportion of parallelism existing in
a simulation model that is exploited by the synchronization
mechanism. Measurements reveal the potentials for perfor-
mance increases in our distributed simulations. We discuss
how optimizations can exploit the identified potentials.

The remainder of the paper is structured as follows. In
Section 2, we cover the related work fundamental to our pa-
per and put our work in the context of previous approaches.
In Section 3, based on the challenges in distributed simula-
tion of peer-to-peer networks, we propose two partitioning
schemes and study their efficiency benefits. In Section 4,
we introduce two novel metrics to investigate the perfor-
mance of the synchronization method used and discuss how
optimizations can be applied to improve the efficiency. In
Section 5, we validate our simulator implementation with
reference to its sequential counterpart and through measure-
ments investigate the performance benefits and remaining
efficiency potentials when distributing the simulation. Sec-
tion 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, we describe the existing concepts our work

is based on: first, we describe the Kademlia protocol [26]
and the protocol properties that determine its potential for
distributed simulation. Second, we describe the synchro-
nization mechanism used in our simulator implementation.
Third, we discuss existing literature on improving and mea-
suring the efficiency of synchronization. Finally, we discuss
the results presented in existing works on parallel and dis-
tributed simulation of peer-to-peer networks.

1http://peersim.sourceforge.net/
2http://dsn.tm.kit.edu/

2.1 Kademlia
Kademlia [26] is a distributed hash table (DHT) enabling

storage and retrieval of key-value pairs in a peer-to-peer net-
work. Peers as well as keys are identified by numbers taken
from a 160-bit ID space. The logical distance between IDs
is defined by the XOR metric d(x, y) = x ⊕ y. All interac-
tions between peers are performed using remote procedure
calls (RPCs), each of which is comprised of a request and a
subsequent response. RPCs form the basis for lookups. We
focus on FIND NODE lookups that are initiated by sending
messages to a number of peers, requesting the closest peers
to a target ID. Additional requests are sent to the peers re-
ceived in the incoming responses to iteratively retrieve the
peers in the network that are closest to the target ID.
Each peer in the DHT maintains a routing table contain-

ing other peers in the network. The routing table is a bi-
nary tree of k-buckets, each holding at maximum k, usually
8, peers. Each k-bucket holds peers in a subsegment of the
160-bit ID space so that the set of all k-buckets in a peer’s
routing table covers the full ID space without overlap. When
a peer A becomes aware of another peer B in the network,
an attempt is made to insert B in the k-bucket covering the
ID range corresponding with B’s ID. If the k-bucket holds
less than k peers, B is added to the k-bucket. If the k-bucket
is full of alive peers, one of two steps is performed:
1. If the k-bucket covers the ID of peer A itself, the cor-

responding k-bucket is split in two, each new k-bucket han-
dling half of the original k-bucket’s ID range. Peer B is
added to the new bucket corresponding to its ID.
2. If the k-bucket does not cover the ID of peer A itself,

peer B is discarded.
Due to the splitting mechanism, a peer’s routing table

tends to contain more peers close to its own ID than peers
with large XOR-distance.
Our implementation of the Kademlia protocol is modeled

after the Mainline BitTorrent DHT as specified in [23]. The
sources for traffic induced by the protocol are as follows.
1. Bootstrapping: when entering the DHT, each peer is

bootstrapped by executing a lookup targeting its own ID to
populate its routing table.
2. Routing Table Maintenance: if a peer attempts to add

a new peer to a k-bucket that is full, requests are sent to
peers in the k-bucket that have not sent a message in the
past 15 minutes. If one of the probed peers does not respond
within a timeout interval, it is replaced by the new peer.
Additionally, if the contents of a k-bucket do not change
within 15 minutes, the k-bucket is refreshed by performing
a lookup for a random ID in the k-bucket’s range.
3. User-initiated lookups: when a user requests the value

associated with a given key, a lookup is triggered.
As each peer’s routing table is biased towards peers with

IDs close to its own, bootstrapping and routing table main-
tenance induce traffic concentrated in XOR-proximity of the
peer. The traffic resulting from user-initiated lookups con-
verges against the lookup’s target ID, which in the simula-
tion is drawn from a uniform distribution on the ID space.

2.2 Conservative Synchronization
In distributed simulations, synchronization between LPs

is required to ensure that simulation results correspond to
those produced by a sequential simulation. We focus on
discrete-event simulations, where state changes in the sim-
ulated system are modeled as events occurring at discrete



Figure 1: An LP determines its EOT by considering
the timestamps of the earliest possible incoming re-
mote event and of the next locally scheduled event.
If the earliest of these events will trigger the creation
of a remote event, the lowest possible timestamp of
the new event is min(EIT, ti+1) + lookahead = EOT .

points in simulated time. There are two main classes of syn-
chronization algorithms for distributed simulations: conser-
vative algorithms guarantee correctness of the simulation at
all times by deciding in advance whether events are safe to be
executed. An event is safe iff no event with lower timestamp
can be received from any remote LP. If LPs only execute safe
events, all events are executed in timestamp order by each
LP. In contrast, optimistic algorithms do not ensure correct-
ness in advance and, when detecting an incorrect event exe-
cution order, restore a previous correct simulation state. In
our implementation, we apply conservative synchronization
based on the common Chandy-Misra-Bryant (CMB) algo-
rithm [6, 7]. Safe events are determined according to the
metrics used by Bagrodia et al. [3]:

• Lookahead : the lowest possible delta between the time-
stamp of the event to be executed next by an LP and
the timestamp of any locally created event to be exe-
cuted on a remote LP. In network simulations, a fixed
lookahead value is given by the minimum link latency
between peers in the simulated network. Dynamic
lookahead calculation will be discussed in Section 2.3.

• Earliest Input Time (EIT): for each LP, the EIT is
the earliest possible timestamp of an event that can
be received from any remote LP.

• Earliest Output Time (EOT): for each LP, the EOT
is the earliest possible timestamp of the next locally
created event to be executed on a remote LP. In the
CMB algorithm, null messages containing the EOT
are exchanged between LPs. If ti+1 is the timestamp
of the next locally scheduled event, the EOT can be
calculated as EOT = min(EIT, ti+1)+ lookahead (cf.
Figure 1). The EIT can be determined from the min-
imum of all other LPs’ EOT.

Synchronization is achieved by the following steps.

1. When checking whether the next event in the local
queue is safe to be executed, all LPs determine their
local EOT and, if it has increased from the previous
iteration, communicate it to all other LPs.

2. A local event is safe to execute if its timestamp is lower
than the EIT, i.e., no event that should have been
executed prior to the local event can be received from
a remote LP. If no safe events exist, the LP is idle.

LPs alternate between two states: execution of safe events
and waiting for events to become safe. In our implementa-
tion, every time an LP has finished executing all available
safe events and there is a change in the local EOT, null
messages are broadcast to all remote LPs. An alternative
approach is to send null messages only on request by idle
LPs [4]. However, as we will see in Section 5.2, null message
traffic accounts for only a marginal amount of simulation
runtime, while LPs are idle frequently. Hence, it is desirable
to notify LPs about changes in EOT early.

2.3 Lookahead Extension
Several methods have been proposed in the literature to

increase the lookahead extracted from a given simulation
model, aiming to determine tight lower bounds on the time-
stamp of the earliest next event to be created for a remote
LP. If model-specific knowledge is supplied to the distributed
simulator, the lookahead can be calculated depending on the
current state of the simulated system [8, 22, 27, 30, 36]. A
more abstract view is given by control flow graphs modeling
state transitions between the components of the simulation
model [9, 37]. The lookahead can then be determined by
following the path of the control flow through a control flow
graph created statically or dynamically. Similarly, Meyer et
al. propose a data flow view of the simulation [27] to dynam-
ically calculate the lookahead.
The improvements achieved by lookahead extension ap-

proaches have in most cases been evaluated by studying the
effects on simulation speedup, the number of null messages
sent and the null message ratio, which is the proportion of
null messages in relation to all messages exchanged between
LPs. If there is insufficient lookahead, large numbers of null
messages are required for the simulation to advance.
Some authors [28, 30] additionally evaluated their ap-

proaches using the Ideal Simulation Protocol (ISP) [17],
which can predict the highest speedup achievable assum-
ing optimal synchronization through distributed runs based
on traces generated in previous simulation runs. Comparing
the runtime of a distributed simulation under a proposed
synchronization method with the runtime using ISP gives
a clear view on the overall efficiency of the synchronization
mechanism. To inspect in detail how much of the available
lookahead is extracted from a model and to guide lookahead
optimizations, efficiency metrics such as the lookahead ratio
introduced by Fujimoto [15] and its derivate proposed by
Preiss et al. [32], the null message inverse lookahead ratio,
are required. Both metrics are calculated from the perspec-
tive of the LP sending future events. The metrics proposed
in our paper, in addition to considering the lookahead cal-
culation itself, take the perspective of the receiver of future
messages and are sampled over wall-clock time. The receiver
perspective allows us to determine how efficiently the looka-
head is communicated among the LPs, i.e., to what extent
the parallelism extracted from a simulation model by a given
LP can actually be utilized by the other LPs.

2.4 Parallel and Distributed Simulation of
Peer-to-Peer Networks

A previous effort of extending PeerSim for distributed sim-
ulation was presented by Dinh et al. [10] in 2008 for networks
based on the Chord protocol. As in our work, synchroniza-
tion is achieved using the CMB algorithm. While memory
usage per LP is reduced substantially, the authors report
simulation slowdown factors of 83 and more compared with
a sequential implementation. In the same year, the authors
presented performance measurements of the same simulator
for the Chord and Pastry networks [11], reporting a super-
linear speedup factor of more than 100 using 64 LPs. A
partial explanation for the large speedup can be gathered
from the enormous computational load incurred by their
network model: a runtime of over two weeks is reported
for a sequential simulation of a static network of 524,288
peers generating a fixed amount of traffic. While the per-
formance of simulations of Chord and Kademlia cannot be



Figure 2: Assignment of peers of a studied network
to LPs for distributed simulation. Edges denote
communication between peers. In the distributed
simulation, communication between peers simulated
in different LPs (dashes lines) requires the exchange
of physical messages between LPs.

compared directly, an indication of the computational in-
tensity of their model is given by the runtime of 399s for
identical parameters in our own sequential implementation.
If the computational load of a simulation is very large, over-
heads for communication and synchronization incurred by
distributing the simulation have only marginal impact, even
though the absolute runtime remains very high.

Lin et al. presented a simulator engine for peer-to-peer
networks that uses a synchronous master-worker synchro-
nization scheme [20]. As limited scaling was observed under
strict synchronization, the authors relax the synchroniza-
tion requirements and ensure that simulated results are not
affected substantially by determining bounds within which
event timestamps may be altered during simulation. Sim-
ulations of networks based on the XRing protocol of up to
16,384 peers and speedup factors of up to 5.4 using 32 work-
ers are reported by the authors. A similar architecture was
proposed by Quinson et al. for simulations of the Chord pro-
tocol, achieving a speedup factor of up to about 1.45 using
24 threads [33]. The authors identify the low computational
granularity and the difficulty of partitioning networks ex-
hibiting the small-world property, i.e., low hop counts sep-
arating peers, as particular challenges in distributed sim-
ulation of peer-to-peer networks. Arguing that the result-
ing overheads cannot be amortized using traditional syn-
chronization approaches, the authors propose a synchronous
master-worker architecture for multicore systems. In con-
trast to this argument, for Kademlia-based peer-to-peer net-
works, our results show that distributing the simulation un-
der the traditional CMB algorithm can substantially reduce
simulation time. Furthermore, we point out efficiency po-
tentials that can be exploited with future optimizations.

3. PARTITIONING SCHEMES FOR
KADEMLIA-BASED NETWORKS

To distribute a simulated network of peers to a number of
LPs, a decision must be made on the partitioning scheme,
i.e., the strategy used in the assignment of simulated peers to
LPs. Two sources of overheads must be considered that can
critically affect the simulation performance: first, physical
exchange of messages between LPs. Second, waiting times
required for synchronization.

Simulation of the communication between peers assigned
to different LPs requires a physical exchange of messages
between the LPs (cf. Figure 2). Therefore, an efficient par-
titioning scheme aims to minimize the communication be-
tween peers simulated in different LPs. Similarly, the choice
of partitioning scheme can also affect the available looka-
head: if peers are assigned to LPs so that simulated message
exchanges across LP boundaries are associated with high la-

Figure 3: Example for ID-based partitioning of a
simulated network into 4 partitions. Each partition
contains peers with IDs sharing a common prefix.

tency, a large lookahead value can be used.
In the following, from the perspective of a given peer, we

refer to peers simulated on different LPs as remote peers and
events targeting remote peers as remote events. Accordingly,
peers simulated on the same LP are termed local peers and
events targeting local peers are termed local events.
When simulating physical networks, a suitable partition-

ing can usually be found on the basis of the physical prox-
imity of the simulated peers by assigning spatially close
peers to the same LP. If closely located simulated peers are
connected through high-throughput links and interact fre-
quently (e.g., in a LAN), while distant peers interact less
frequently over a low-throughput connection (e.g., through
a WAN), remote events are infrequent and the overhead for
exchanging messages between LPs is low. In addition, as
link latency tends to increase with spatial distance [2], in a
simulation using a location-based partitioning scheme, the
minimum link latency of simulated messages sent across LP
boundaries tends to be larger than the minimum latency of
messages simulated within an LP, allowing for a large fixed
lookahead value. Therefore, for simulations of physical net-
works, location-based partitioning can jointly reduce remote
events and synchronization overheads.
In contrast, peer-to-peer overlay networks superimpose an

application-level logical topology onto the underlying physi-
cal network. Finding a suitable partitioning for simulations
of overlay networks is complicated by the fact that the log-
ical topology of the overlay network does not necessarily
reflect the physical proximity relationships between peers.
Hence, contrary to simulations of physical networks, there
is a tradeoff between minimization of the number of remote
events through a partitioning based on the logical topology
of the network, and maximization of latencies, and hence
lookahead, associated with remote events through location-
based partitioning.

3.1 ID-Based Partitioning
First, we focus on reducing the physical exchange of mes-

sages between LPs. To this end, we need to be aware of
the communication patterns arising from the topology of the
simulated network. The traffic induced by two of the sources
of traffic in the Kademlia network, bootstrapping and rout-
ing table maintenance, is concentrated around the initiating
peer’s ID (cf. Section 2.1). We can exploit the resulting lo-
cality by partitioning the ID-space into segments of equal
size and assigning one partition to each LP (cf. Figure 3).
We show that ID-based partitioning results in low amounts

of overhead for communication between LPs: For each dou-
bling of the number of LPs, only a maximum of k additional
peers in a peer’s routing table come to reside on a remote LP,
where k is the maximum number of peer IDs each bucket in
a peer’s routing table can hold, usually 8.
Each peer’s routing table can be viewed as a binary tree [26]

where leafs are k-buckets and edges are annotated with the
ID prefix handled by the leaves of the corresponding subtree



Figure 4: Binary tree structure of the Kademlia
routing table of a peer with ID prefix 101. Dashed
lines denote edges leading to leaf nodes not sharing
the peer’s prefix. Each doubling of LPs leads to a
cut that displaces the peers in a single leaf node of
the routing table to a remote LP.

(cf. Figure 4). The depth of the tree is only increased by ap-
plying the splitting mechanism described in Section 2.1. We
use α to denote the ID of the peer owning the routing table.
Consider the leaf node pertaining to α at depth i of the bi-
nary tree. The leaf node corresponds to a k-bucket holding
peers with a common prefix of length i. The splitting mech-
anism replaces a leaf node containing α with a new subtree
consisting of two edges: an edge es with a leaf node corre-
sponding to IDs with a common prefix of length i+1 shared
by α, and an edge en with a leaf node for a prefix of the same
length not shared by α. In consequence, when following the
edges pertaining to α’s prefix, on level i of the tree, there is
either a leaf node containing α, or there are two edges: one
edge leading to an arbitrary number of nodes pertaining to
IDs with prefix length i shared by α, and one edge leading
to only a single node pertaining to IDs with prefix length i
not shared by α.
Doubling the number of LPs from 2i to 2i+1 mirrors the

splitting mechanism and can be regarded as dividing two
halves of the subtree at depth i between two LPs. For 20 = 1
LP, the k-buckets pertaining to all nodes of the tree are han-
dled by the local LP. When doubling the number of LPs,
there are two cases: if the subtree at depth i is a leaf node,
peers in one half of the corresponding k-bucket’s ID range
are assigned to a remote LP, while peers in the other half
remain local. If the subtree at depth i has two edges, the
peers of the single leaf node below en are assigned to a re-
mote LP, while all other nodes in the subtree remain local.
All nodes below es remain on the local LP. Hence, as each
k-bucket holds a maximum of k peers, only a maximum of
k peers become remote in each doubling of the LP count.
In Section 5.2, we show through measurements that the

inter-LP communication increases only by a roughly con-
stant amount when doubling the number of LPs.
Besides reducing inter-LP message exchanges, ID-based

partitioning also enables reductions in the computational
effort required within each LP. In simulations strictly ad-
hering to the discrete-event paradigm, all state changes are
modeled as events. However, by exploiting the fact that
frequently, all system state pertaining to a single simulated
communication is contained in a single LP, some events can
be omitted in an effort to improve simulation performance.
Consider the following example: the simulated peer A is

instructed to send a request to peer B, expecting a corre-
sponding response. The reception of the request is delayed
by a random link latency δ. However, peer B is offline (or
behind a firewall). Therefore, after a fixed delay γ, a time-
out will occur at peer A. After an initial SendRequest event

Figure 5: In the location-based partitioning scheme,
peers are assigned to ranges of latitudes (left) or
longitudes (middle), or to regions of small diameter
and equal size (right) on the earth’s surface.

has been scheduled, the process is modeled as follows.

1. t0: Execute the SendRequest event at peer A.

2. t0: Schedule a ReceiveRequest event for peer B.

3. t0 + δ: Execute the ReceiveRequest event. Peer B’s
offline status is detected.

4. t0 + δ: Schedule a Timeout event for peer A.

5. t0 + γ: Execute the Timeout event.

If peer B’s state is in local memory, we can optimize the pro-
cess by probing the online status of peer B in step 1. Steps
2 and 3 can be avoided completely. However, peers A and
B may be simulated by different LPs. In this case, peer B’s
status cannot be accessed directly, requiring the exchange
of a minimum of two messages between the LPs simulating
A and B. Nevertheless, for all peers simulated on a single
LP, the optimization can be applied. As the only effect of
steps 2 and 3 is the creation of the Timeout event, simula-
tion results are not affected by this optimization. Hence, in
addition to reducing the number of physical inter-LP mes-
sage exchanges, some computational effort can be avoided
by allocating communicating peers on the same LP.

3.2 Location-Based Partitioning
We will now focus on increasing the maximum lookahead

value available in the simulation. A location-based parti-
tioning can increase the average spatial distance between
remote peers compared with local peers. As there is a strong
relationship between physical distance and link latency [2],
an increase in distance between communicating remote peers
will be reflected by an increase in link latencies. Hence, with
dynamic lookahead calculation, more local events will be safe
to execute on average, potentially reducing idle times.
In our location-based partitioning scheme, peers are as-

signed to LPs according to the peers’ spatial position. We
compare three strategies: assignment based on ranges of
latitudes or longitudes, and an assignment to regions with
small diameter and equal area (cf. Figure 5). To find appro-
priate regions on the earth’s surface, we used the MATLAB
implementation of the algorithm proposed by Leopardi [19].
For a network model that follows the real-world distribu-

tion of peers across the earth’s surface [18], the partitioning
scheme would need to consider the given distribution both to
achieve load balance between LPs and to maximize distances
between remote peers. Here, we follow simplifying assump-
tions to be able to demonstrate the fundamental effects of
the partitioning scheme. Based on the assumptions of a per-
fectly spherical earth and peers being distributed uniformly
on the earth’s surface we numerically examine the average
spatial distance between peers exchanging messages across
LPs. For each chosen number of partitions we calculate the
average distance between points residing in different parti-
tions, picked at random on the surface of a sphere.



Table 1: Average distance between remote peers un-
der location-based partitioning.

Average Distance [km]
#Part. By Latitude By Longitude By Regions

2 11895.2 ± 2.4 11895.7 ± 2.4 11895.4 ± 2.4
4 10685.5 ± 2.5 11263.4 ± 2.4 10954.7 ± 2.5
8 10341.4 ± 2.6 10653.3 ± 2.5 10808.4 ± 2.5

16 10166.9 ± 2.6 10325.1 ± 2.6 10465.0 ± 2.5
32 10084.2 ± 2.7 10158.8 ± 2.7 10254.6 ± 2.6
64 10040.3 ± 2.7 10078.1 ± 2.7 10132.5 ± 2.6

For picking points on the surface of a sphere, we use a
method by Marsaglia [25]: we generate V1 and V2, both
uniformly distributed on (−1, 1) and reject all pairs where
S = V 2

1 + V 2
2 ≥ 1. Using the remaining pairs, the carte-

sian coordinates of points distributed uniformly on the unit
sphere are given by (2V1

√
1− S, 2V2

√
1− S, 1− 2S). Given

two such points, and after conversion to spherical coordi-
nates φ1, λ1 and φ2, λ2, the distance on a sphere of radius
r is given by d = rψ, with ψ = cos−1(cosφ1cosφ2cos(λ1 −
λ2) + sinφ1sinφ2) (e.g., [5]).
The numerical results are listed in Table 1 with 95% con-

fidence intervals. The average distance between points for
a single partition is 10,000 km, corresponding to the ex-
pected distance between points on the surface of a sphere
with 40,000 km circumference. The same mean distance is
achieved by partitioning schemes not considering peer loca-
tions, regardless of the number of partitions. The largest
benefit is achieved for two LPs: remote link latencies are
increased by about 19%. When increasing the number of
partitions, each partition becomes smaller and the results
asymptotically approach those for a single partition. For
large numbers of LPs, partitioning the earth into regions of
small diameter gives the largest benefit of the three schemes.

In all cases, for 2 and more LPs, the minimum latency is
given for communication between peers at a shared border of
two partitions and hence remains constant. Therefore, the
lookahead must be calculated dynamically to benefit from
the location-based optimization scheme. The overall effect
on simulation runtime depends on the communication costs
between LPs: as peer IDs are chosen independently from lo-
cations, location-based partitioning does not follow the sim-
ulated network’s logical topology. Consequentially, the num-
ber of messages exchanged between LPs must be expected
to be substantially larger than with ID-based partitioning.
Therefore, we will focus on the ID-based partitioning scheme
in our performance evaluation.

4. PARALLELISM POTENTIALS
A given partitioning scheme exposes a certain proportion

of the parallelism inherent in the simulated network. Ide-
ally, LPs spend most of the distributed simulation runtime
executing events instead of waiting for local events to be-
come safe to execute. There are two possible reasons for
frequent waiting: either there is insufficient parallelism in
the simulated system itself, or the existing parallelism is not
exploited to its full extent. In this section, we first introduce
metrics to expose how much of the parallelism of a simula-
tion model under a given partitioning scheme is exploited
and apply the metrics to our distributed simulator. Second,
we discuss how existing lookahead optimization techniques
can be applied to distributed simulations of peer-to-peer net-
works in order to improve the efficiency of synchronization.

Figure 6: Chronological sequence of simulation
schedules for LPA as an example for waiting times
due to synchronization. LPA waits for its EIT to ad-
vance (1.) before executing further events (2.). At
ti + 250ms, a remote event arrives from LPB (3.).

4.1 Assessment
Considering the timeline of a logical process LPA depicted

in Figure 6 in a distributed simulation using two LPs. The
EIT distance is the delta between the current EIT and the
LP’s current point in simulated time. LPA is currently idle,
waiting for its EIT of t0 + 100ms to advance beyond any of
the locally scheduled events so they become safe to execute
(1.). Now, LPB updates its EOT to t0 + 200ms and LPA

can start executing local events (2.). Finally, LPA receives
a remote event from LPB with a timestamp of t0 + 250ms
(3.). As we can see, at 1. it would have been possible for
LPA to start executing local events right away without vi-
olating timestamp order. Recall that the EOT is a lower
bound on the timestamp of any event which may be created
for a remote LP. An obvious question is then: how tight is
this lower bound? We can consider the unnecessarily large
waiting time of LPA an effect of the insufficient quality of
the EOT calculated by B. We introduce the term EOT qual-
ity and define it intuitively as follows: the EOT quality
is the average proportion of simulated time until an
actual remote event is received that is covered by a
previously received EOT. An EOT quality of 100% cor-
responds to perfect synchronization between LPs, i.e., LPs
are able to exactly predict the timestamp of the next in-
coming remote event and can execute all prior safe events
immediately, whereas an EOT quality of 0% will not allow
the simulation to progress at all. As we are interested in the
average quality of the EOT over the course of a simulation
run, we sample the EOT distance periodically during simu-
lation runtime by storing remote EOT distances received in
the most recent null messages. When the next remote event
by each remote LP is received, the stored EOT distance is di-
vided by the distance of the remote event’s timestamp from
the reference point in simulated time. In our example, the
quality of EOTB at 1. is 100ms/250ms = 40%. The EOT
quality indicates how efficiently the lookahead available in
the simulation model under a given partitioning scheme is
determined and communicated to other LPs. A related met-
ric is the lookahead ratio introduced by Fujimoto [15] and
its derivative by Preiss et al. [32], the null message inverse
lookahead ratio (NILAR). The lookahead ratio relates the
average time increment between an LP’s events to the looka-
head, without considering null messages. The NILAR ap-
plies the same idea to the lookahead used in null messages.
Both metrics are determined from the perspective of the LP
sending events and null messages. However, our aim is to



study the reasons for idle times in the distributed simula-
tion. As an LP is idle whenever there are no safe events
according to the EOTs received from other LPs, the EOT
quality is calculated from the perspective of an LP receiv-
ing an EOT and sampled over wall-clock time. This way,
in addition to considering the lookahead calculation itself,
the EOT quality takes into account the efficiency of the null
message sending strategy.

We will now give a more formal definition of the EOT
and EIT quality metrics. Given the current wall-clock time
τ and the current position ti in simulated time, we define the
EOT distance as the delta between the last EOT received
from the remote logical process LPr and the current position
in simulated time: dEOT (τ, LPr) = EOT (τ, LPr) − ti(τ).
Sampling the EOT quality at τ in wall-clock time in a logical
process LPl is comprised of the following steps.

1. LPl’s current position in simulated time ti(τ) is stored
together with all current EOT distances dEOT (τ, LPr).

2. For each remote logical process LPr, when the next
remote event with timestamp tr,LPr is received, the
corresponding EOT quality is calculated as

QEOT =
dEOT (τ, LPr)

tr,LPr − ti(τ)

In simulations with more than two LPs, another metric
becomes useful: EIT quality is the proportion of simulated
time until a remote event is received that is covered by a pre-
vious EIT. The EIT quality shows the effect of aggregating
the remote LPs’ EOTs. Sampling is performed as follows.

1. LPl’s current position in simulated time ti(τ) is stored
together with the current EIT distance dEIT (τ) =
EIT (τ)− ti.

2. When the next remote event with timestamp tr is re-
ceived from any of the remote LPs, the EIT quality is
calculated as

QEIT =
dEIT (τ)

tr − ti(τ)

We will study the EOT and EIT quality measured in runs
of our distributed simulator implementation in Section 5.2.

4.2 Lookahead Extension Options
Given metrics for the quality of the calculated EOT and

EIT, the question arises: how are these measures affected
when applying optimizations to the distributed simulator?

In the EOT and EIT quality measurements, we have seen
that only a small portion of the available parallelism is ex-
ploited given a fixed lookahead. To achieve more efficient
synchronization, the lookahead can be calculated by eval-
uating each LP’s system state dynamically to determine a
lower bound on the timestamp of the next remote event that
may be created locally. Previously, we determined the EOT
using the timestamp of the next locally scheduled event and
a fixed lookahead: EOT = min(EIT, ti+1) + lookahead. In
this section, we focus on events created locally and hence
consider the case where EIT > ti+1, and consequentially
EOT = ti+1 + lookahead. The EOT calculation using fixed
lookahead makes three worst case assumptions, each limiting
the EOT and EIT quality: First, we assume that the next

Figure 7: LPB’s schedule during calculation of its
EOT based on fixed lookahead (1.). The event at
tj+1 creates a remote event to be executed by LPA

after a delay based on a random link latency δ (2.).

remote event will have the minimum possible link latency. In
non-pathological examples, a substantial proportion of link
latencies will be larger than the minimum. Second, it is as-
sumed that the next local event will in fact create a remote
event.Third, we calculate the EOT under the assumption
that any new event can affect any of the remote LPs. How-
ever, ultimately, each event created will affect at most one of
the remote LPs. How can we relax these worst case assump-
tions and obtain tighter bounds on the distance of the next
remote event based on the existing methods discussed in
Section 2.3? To address the first assumption, we revisit the
example of Section 4.1, now focusing on LPB (cf. Figure 7).
At tj in simulated time, we are aware of the timestamp tj+1

of the next local event. If the next event will indeed cre-
ate a remote event, we are able to predict the new event’s
timestamp exactly given knowledge of the next random la-
tency. An optimization proposed in the literature [3, 21,
24] is based on the fact that random number generation is
a deterministic process. Instead of generating the next ran-
dom latency at the time of creation of each event, we can
precalculate link latencies, allowing us to exactly determine
the timestamp of a remote event potentially created next.
To address the second assumption, we can examine the

type of the next local event. If events of the given type
cannot create new events, or can only create local events,
events of the given type can be skipped in our EOT calcu-
lation. However, if the event is of a type that can create
remote events, the peer state must be examined to make
guarantees with respect to remote event creation. For in-
stance, if a peer at a given point in simulated time is not
aware of any peer on a remote LP, an event corresponding
to this peer will not affect any remote peers. Gathering this
knowledge requires examining the peer’s routing table. The
same way, we can address the third assumption by deter-
mining from a peer’s state which of the remote LPs can be
affected by newly created events. A dedicated EOT value
can then be calculated for each remote LP.
Being able to skip events with only local effects in the

EOT calculation has the notable side-effect of creating a link
between the two optimization goals identified in Section 3:
if a partitioning scheme minimizes the number of remote
events, more events can be skipped during EOT calculation
and synchronization overheads are reduced as well.
However, relaxing the worst-case assumptions during EOT

calculation in an LP incurs additional computational costs.
In Section 5.2, we will see that in our measurements, a sub-
stantial portion of simulation time is spent waiting for local
events to become safe to execute and could be invested in dy-
namic lookahead calculation instead. Hence, we are hopeful
that the parallelism unlocked by the additional computa-
tions can result in a reduction in overall simulation runtime.



In our future work, we will investigate the tradeoff between
the computational effort required to increase EOT quality
and the gains in overall simulation performance.

5. SIMULATOR EVALUATION
In this section, we evaluate the effects of the partitioning

schemes introduced in Section 3 through performance mea-
surements of our distributed simulator implementation. We
will first demonstrate that our distributed simulator imple-
mentation produces results that correspond to those of the
sequential simulator. A statistical validation shows devia-
tions of 1.0% or less in the results. The simulator perfor-
mance is studied for simulations of networks of 1 and 10
million peers. Simulation runs were performed on up to 16
machines equipped with 16 Intel Xeon E5-2670 cores each
and connected using InfiniBand 4x QDR. To be able to fully
exploit each machine’s memory resources, each LP uses all
16 cores of one machine. Each LP uses one core each for sim-
ulation and communication. The remaining cores are avail-
able to the Java runtime environment to perform garbage
collection. The sequential simulator used as a reference for
speedup calculation utilizes 16 cores in the same fashion.
The sequential implementation is highly optimized and sim-
ulates a network of one million peers for one simulated hour
in about 1.5h of wall-clock time. Results are stated as aver-
ages of three runs with 95% confidence intervals.

5.1 Validation
The correctness of a distributed simulator is determined

with reference to its sequential counterpart. If both imple-
mentations produce identical results, the distributed simula-
tor is considered to be correct. Here, we perform a statisti-
cal validation and show that distributing the simulation has
only an insignificant effect on the results, as in, e.g., [14].

We compare the results of the sequential and distributed
runs with respect to lookup performance metrics, as DHTs
such as Kademlia are used for efficient storage and retrieval
of key-value pairs. The correctness of the simulator hinges
on correct modeling of these procedures. Table 2 lists the
number of requests, lookup duration and number of time-
outs for runs of one simulated hour with a network size of 1
million peers for simulations using up to 16 LPs. Three runs
with different seeds were performed for each configuration.
We can see that there is a close match in the results, the
highest observed deviation from the sequential runs being
1.0% for the average lookup duration, 6552.00ms compared
to 6484.67ms, for 16 LPs, which we argue considering the
associated confidence intervals can be regarded as marginal
in the context of real-world simulation studies.

5.2 Performance
We study the performance of the simulator for two dif-

ferent partitioning schemes. Our focus is the ID-based par-
titioning scheme that promises high performance by con-
sidering the simulated network’s topology. We contrast the
results with a random partitioning scheme that does not con-
sider peer IDs and must therefore be expected to incur the
same amount of overheads as the location-based partitioning
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Figure 8: Memory usage per LP for a network size
of 1 million peers, varying the number of logical pro-
cesses and the partitioning scheme.
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Figure 9: Simulation runtime for a network size of
1 million peers, varying the number of logical pro-
cesses and the partitioning scheme.

Table 3: Percentage of messages to local peers [%]
depending on partitioning schemes.

LPs Random ID-Based

1 100 100
2 45.67 ± 0.04 91.11 ± 0.01
4 22.24 ± 0.14 83.00 ± 0.03
8 11.11 ± 0.09 75.27 ± 0.03

16 5.82 ± 0.06 67.69 ± 0.06

scheme under fixed lookahead.
Figure 8 shows the memory usage per LP for simulation

runs using ID-based and random partitioning, for networks
of 1 million peers over the course of one simulated hour.
Memory usage was reduced close to linearly with the number
of LPs, from 12713 MB to 883 MB when moving from 1 to
16 LPs, a factor of 14.4. The choice of partitioning scheme
had no marked impact on memory usage.
Simulation runtime (cf. Figure 9) was reduced substan-

tially as well. For two LPs, the overheads for synchroniza-
tion and physical message exchanges were not amortized by
the distributed computation. This is an effect of null mes-
sages being sent by each LP only after executing all avail-
able safe events, as LPs frequently have to wait for the next
null message from their single counterpart before computa-
tion may proceed. Starting with 4 LPs, simulations under
ID-based partitioning proceeded faster than realtime. High-
est performance was achieved using 16 LPs with ID-based
partitioning, reducing simulation runtime by a factor of 6.01
compared with sequential runs. The simulation runtime was
843s, compared with 2301s for random partitioning.

Table 2: Comparison of sequential and distributed simulation results.
1 LP 2 LPs 4 LPs 8 LPs 16 LPs

Number of Requests (106) 694± 0.51 694± 1.63 692± 3.07 691± 3.34 691± 2.62
Avg. Lookup Time [ms] 6485.67 ± 19.30 6514.67 ± 23.87 6521.67 ± 43.62 6536.33 ± 30.36 6552.00 ± 37.51

Timeouts [%] 42.54 ± 0.08 42.54 ± 0.09 42.46 ± 0.18 42.42 ± 0.13 42.39 ± 0.16



Table 4: Percentage of time spent in the different execution states during simulation runtime.
1 LP 2 LPs 4 LPs 8 LPs 16 LPs

Execute Event 98.19 ± 0.47 56.32 ± 4.65 55.82 ± 2.53 50.68 ± 2.58 47.38 ± 1.85
Forward Event N/A 3.00 ± 0.66 6.13 ± 1.70 7.24 ± 1.64 8.32 ± 1.55

Handle Message N/A 15.31 ± 1.17 22.28 ± 1.86 19.56 ± 2.72 17.53 ± 2.73
Send Null Message N/A 0.01 ± 0.00 0.06 ± 0.01 0.22 ± 0.02 0.80 ± 0.08

Idle (incl. Overhead) 1.81 ± 0.47 25.37 ± 3.83 15.72 ± 6.03 22.30 ± 4.41 25.97 ± 5.14

Table 5: EOT and EIT quality varying the LP count.
LPs QEOT [%] QEIT [%]

2 32.30 ± 2.20 32.30 ± 2.20
4 39.43 ± 0.45 26.94 ± 4.61
8 31.33 ± 3.38 17.89 ± 1.79

16 23.96 ± 5.26 9.92 ± 0.56

In order to demonstrate the simulator’s scalability, we per-
formed an additional simulation run for a network with the
size of the BitTorrent Mainline DHT [18] of 10 million peers
over the course of one simulated hour using ID-based par-
titioning on 16 LPs. The simulator required 14966s (about
4.2h) to simulate a total of about 8.24× 109 requests. Each
of the 16 LPs used about 9450 MB of memory.

To explore the basis of the benefit of ID-based partitioning
in the simulations for 1 million peers, Table 3 lists the per-
centage of simulated messages that were exchanged between
local peers and thus did not require physical communication
between LPs. For random partitioning, the percentage of lo-
cal messages was roughly halved when doubling the number
of LPs. For ID-based partitioning, the percentage of lo-
cal messages was reduced by a roughly constant amount of
about 8% for each doubling of LPs, supporting our analysis
in Section 3.1. Location-based partitioning (cf. Section 3.2)
does not consider peer IDs and must hence be expected to
create as many remote events as random partitioning.

We studied the distributed simulation performance more
closely by instrumenting the simulator to measure the pro-
portion of runtime spent in the following simulation states:
Execute Event : a safe event is being executed; Forward
Event : an event is sent to a remote LP; Handle Message:
an incoming message is parsed, and if the message contains
a remote event, it is added to the local queue; Send Null
Message: a null message is sent to a remote LP; Idle: the
LP waits for local events to become safe to execute. The
Idle state includes the overheads incurred by the time mea-
surements. Table 4 lists the proportion of time after initial-
ization that was spent in the different states for simulations
with ID-based partitioning. We can see that with increasing
numbers of LPs, the time spent executing events decreased.
As expected, the time spent on exchanging events between
LPs increased only moderately with larger LP count. Null
message sending overhead increased super-linearly, yet only
accounted for a small amount of simulation runtime. In all
distributed cases, a large amount of time was spent in the
idle state. For 1 LP, the idle state was comprised completely
of time measurement overheads, which accounted for less
than 2% of the simulation runtime, indicating that in the
distributed runs, the time spent in the idle state was indeed
dominated by waiting for local events to become safe.

To further investigate the cause for idle times in the sim-
ulation, we sampled the EOT and EIT quality every second
as described in Section 4.1. The measurement results are
listed in Table 5. On average, a maximum of 39.43% of the

simulated time up to the next remote event was covered by
a received EOT. As the EIT is calculated as the minimum
of all received EOT, even less time was covered by the EIT,
with a decrease in quality for larger numbers of LPs. For 16
LPs, the measured EIT covered only 9.92% of the simulated
time until the next remote event was received. There are
two possible causes for low EOT and EIT quality: either
the LPs do not communicate their EOT frequently enough,
or the lookahead calculation does not exploit the parallelism
in the simulation model sufficiently. To determine which of
the explanations applies, we maximized the null message
sending frequency by sending null messages on each change
of the EOT, instead of only when there were no local safe
events. With more frequent null messages, we achieved an
EOT and EIT quality of 46.88% for simulations using two
LPs. Simulation runtime decreased from 6315s to 5340s.
Idle time decreased from 25.37% to 18.48%. However, for
all simulations using more than two LPs, the overheads of
sending more frequent null messages increased the simula-
tion runtime compared to the less eager strategy, as null
messages were broadcast to all LPs on each EOT change.
In addition to varying the null message sending frequency,

the EOT and EIT quality can also be increased by improving
the lookahead calculation. In our simulation model imple-
mentation, link latencies in ms are drawn from a uniform
distribution on the interval [10, 200]. We therefore use 10
ms as the fixed lookahead, which covers only a small pro-
portion of the available maximum lookahead in the model.
We expect that applying the methods for dynamic lookahead
calculation discussed in Section 4.2 to our simulator imple-
mentation will further improve simulation performance.

6. CONCLUSION
We studied the potentials for efficient conservative dis-

tributed simulation of peer-to-peer networks of Kademlia-
based networks. A partitioning scheme mirroring the con-
struction of the simulated nodes’ routing tables substantially
reduces the communication required between processors ex-
ecuting the simulation, while a partitioning scheme based
on location can reduce synchronization overheads. Using
the partitioning scheme based on the simulated nodes’ rout-
ing tables, our distributed simulator implementation enables
close to linear reductions in memory usage per processor and
runtime reductions up to a factor of 6.0 with 16 LPs. The
simulator code is available to the community and can simu-
late a network of 10 million peers for one simulated hour in
about 4 hours of wall-clock time. We introduced novel met-
rics that can be used to identify the potential for efficiency
improvements in the synchronization scheme. Performance
measurements show that substantial efficiency potentials re-
main that can be exploited by dynamically assessing the sim-
ulation state during synchronization. In our future work, we
will study the impact of optimizations to the synchroniza-
tion mechanism under the proposed efficiency metrics and
with respect to overall performance.



7. REFERENCES
[1] P. Andelfinger and H. Hartenstein. Towards Performance

Evaluation of Conservative Distributed Discrete-Event
Network Simulations Using Second-Order Simulation. In
Proc. of the 2013 ACM SIGSIM Conf. on Principles of
Advanced Discrete Simulation, pages 221–230, 2013.

[2] M. J. Arif, S. Karunasekera, and S. Kulkarni. GeoWeight:
Internet Host Geolocation Based on a Probability Model
for Latency Measurements. In Proceedings of the 33rd
Australasian Conference on Computer Science, ACSC ’10,
pages 89–98. Australian Computer Society, Inc., 2010.

[3] R. Bagrodia and M. Takai. Performance Evaluation of
Conservative Algorithms in Parallel Simulation Languages.
IEEE Transactions on Parallel and Distributed Systems,
pages 395–411, 2000.

[4] W. L. Bain and D. S. Scott. An Algorithm for Time
Synchronization in Distributed Discrete Event Simulation.
In Proc. of the SCS Multiconference on Distributed
Simulation, pages 30–33, 1988.

[5] G. Bottoni and R. Barzaghi. Fast Collocation. Bulletin
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