
Fast-Forwarding of Vehicle Clusters
in Microscopic Traffic Simulations

Philipp Andelfinger
TUMCREATE Ltd and

Nanyang Technological University
philipp.andelfinger@gmail.com

David Eckhoff
TUMCREATE Ltd and

Technische Universität München
david.eckhoff@tum-create.edu.sg

Wentong Cai
Nanyang Technological University

aswtcai@ntu.edu.sg

Alois Knoll
Technische Universität München and
Nanyang Technological University

knoll@in.tum.de

ABSTRACT
State fast-forwarding has been proposed as a method to reduce the
computational cost of microscopic traffic simulations while retain-
ing per-vehicle trajectories. However, since fast-forwarding relies
on vehicles isolated on the road, its benefits extend only to situa-
tions of sparse traffic. In this paper, we propose fast-forwarding of
vehicle clusters by training artificial neural networks to capture the
interactions between vehicles across multiple simulation time steps.
We explore various configurations of neural networks in light of
the trade-off between accuracy and performance. Measurements in
road network simulations demonstrate that cluster fast-forward-
ing can substantially outperform both time-driven state updates
and single-vehicle fast-forwarding, while introducing only a small
deviation in travel times.
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1 INTRODUCTION
The per-vehicle modeling approach of microscopic traffic simu-
lation is known to entail a substantial computational burden. By
representing some of the vehicles in aggregate, mesoscopic and
macroscopic modeling approaches reduce simulation running times
at the cost of reduced accuracy of the results [7]. In particular, when
considering vehicles in aggregate, it becomes impossible to study
interactions among individual vehicles in detail or to follow a vehi-
cle’s trajectory throughout an entire trip.

State fast-forwarding [1] (in the following referred to as single-
vehicle fast-forwarding) has been proposed as an approach to ac-
celerate microscopic traffic simulations while still retaining the
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microscopic nature of the simulation. Fast-forwarding determines
so-called independence intervals during which individual vehicles
are guaranteed not to interact with other vehicles. The mobility of
such isolated vehicles can be predicted accurately at low computa-
tional cost, which allows the vehicles to be advanced to the point in
simulated time at which the earliest interaction with other vehicles
may occur, avoiding intermediate computations. This allows com-
mon and established models originally formulated in a time-driven
manner to be executed in a partially event-driven mode.

Even though single-vehicle fast-forwarding achieves consider-
able running time reductions in simulations of sparse traffic, more
congested scenarios allow for onlymodest reductions. In the present
paper, we extend the fast-forwarding approach to clusters of multi-
ple vehicles (cluster fast-forwarding). While this extension seems
natural, the vehicle interactions within clusters do not permit the
straightforward numerical solution of the underlying models used
by single-vehicle fast-forwarding. Instead, cluster fast-forwarding
relies on artificial neural networks to predict the lanes, positions,
and velocities of vehicles in a cluster after a number of time steps.
In contrast to existing hybrid microscopic-macroscopic approaches,
predictions are only applied in situations where interactions with
vehicles outside a cluster have been ruled out, which allows for
accurate predictions. The contributions of this paper are as follows:

(1) We introduce the approach of cluster fast-forwarding and de-
scribe the constraints under which clusters can be advanced
into the simulated future.

(2) We explore the hyperparameter space of artificial neural
networks to predict future vehicle states, considering the
trade-off between accuracy and cost.

(3) We evaluate the performance gains of cluster fast-forwarding
over time-driven microscopic simulation and single-vehicle
fast-forwarding on a grid road network.

2 RELATEDWORK
We consider time-driven microscopic traffic simulations in which
vehicles are advanced on a road network by state updates carried
out at fixed increments of simulated time. Commonly, two types of
models are applied: a car-following model determines a vehicle’s
longitudinal movement based on its own velocity and displacement
as compared to the vehicle ahead, while a lane-changing model
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Figure 1: Overview of cluster fast-forwarding. Periodically, road segments that can be fast-forwarded to a future point in time
are extracted from the road network. Predictions of the vehicles’ future states are generated by neural networks and stored as
part of the new simulation state.

determines the lateral movement depending on the space on the cur-
rent and adjacent lanes and the expected acceleration of the current
vehicle and its neighbors. The experiments presented in Section 4
will rely on the Intelligent Driver Model [9] for car-following and
the MOBIL model [5] for lane-changing.

Hybrid microscopic-macroscopic modeling approaches apply de-
tailed models to regions of interest in the simulation space, whereas
other regions are simulated at a more abstract level to reduce the
computational load (e.g., [2, 3]). The main challenge is the accuracy
of the aggregation and disaggregation of simulated entities when
crossing regions modeled at different levels of detail. Thus, the
performance gains may come at the cost of substantial deviations
compared to a purely microscopic reference simulation. Our work
differs from existing hybrid approaches in the lack of a need for
explicit aggregation and disaggregation. Further, only isolated clus-
ters are fast-forwarded, enabling low deviations from the results of
a reference simulation.

A variety of works have applied artificial neural networks to
predict vehicle mobility based on sensor data such as video footage
(e.g., [4, 6, 8]). While these works aim to predict future traffic situa-
tions directly from data, our objective is to closely reproduce the
results generated by specific models instead of empirical data. The
need to balance prediction accuracy and cost puts our focus on the
dimensioning and parametrization of the artificial neural networks.

3 CLUSTER FAST-FORWARDING
The single-vehicle fast-forwarding approach proposed in our previ-
ous work exploits properties of common microscopic traffic mod-
els. Car-following models are frequently defined by differential
equations expressing the relationship between a vehicle’s velocity
and distance to a leading vehicle and its acceleration. If a vehicle
is isolated on the road network, the lack of coupling permits a
straightforward and computationally inexpensive solution of the
car-following equation. Further, the lane-changing behavior of iso-
lated vehicles is trivially predictable. Simulation running times are
reduced by efficiently advancing isolated vehicles multiple time
steps into the simulated future.

In contrast, simulating a chain of multiple vehicles requires the
solving of a coupled differential equation. To do so, common traffic
simulators iteratively apply numerical integration over discretized

simulation time. This time-driven approach also accommodates
lane-changing decisions applied at discrete points in simulation
time. Given a reference simulation of this type, advancing a cluster
of vehicles from time 𝑡 to 𝑡 + 𝑛 requires a prediction of the coupled
car-following behavior and all lane-changes that may have occurred
in the meantime. Cluster fast-forwarding carries out these predic-
tions using artificial neural networks trained on vehicle state data
generated from large numbers of time-driven simulations. Both
the input and output of each prediction is a set of state variables
reflecting the vehicles’ lane indices, displacements, and velocities at
simulation times 𝑡 and 𝑡 + 𝑛. To limit the predictions to sufficiently
small numbers of vehicles so that accurate predictions are still pos-
sible, we determine intervals where the considered vehicle clusters
are isolated.

Figure 1 illustrates one iteration of fast-forwarding at simula-
tion runtime: for each road segment 𝑟 , a scanning step determines
the earliest point in time 𝑡sense at which a vehicle on another road
segment may sense 𝑟 , as well as the earliest time 𝑡next at which a
vehicle on 𝑟 senses the next road on its route. A simple approach
to determine 𝑡sense and 𝑡next is to project the future movement of
vehicles based on their maximum velocity according to the road seg-
ments’ speed limits. Now, 𝑡fast-forward := min(𝑡sense, 𝑡next) is a lower
bound on the time at which vehicles on the current road segment
may interact with others. Thus, in the fast-forwarding step, the
vehicles can be advanced to at most 𝑡fast-forward. The approach is
parametrized with the period at which scanning and fast-forward-
ing is attempted (“scanning period”), and the maximum amount of
time by which vehicles may be advanced (“scanning horizon”).

4 EXPERIMENTS
4.1 Neural Network Configuration
Cluster fast-forwarding relies on artificial neural networks to pre-
dict the future states of small numbers of vehicles on a road segment.
However, a substantial number of road segments of varying speed
limits, numbers of lanes, and sizes of independence intervals may
be considered at the same time. To achieve an overall performance
benefit, the prediction cost must be as low as possible, while still
maintaining sufficient accuracy to not invalidate the simulation
results. In this section, we explore a variety of neural network
configurations in light of this trade-off.
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Figure 2: Scatter plot of prediction errors and per-vehicle
prediction running times for different neural network con-
figurations. Black points indicate the Pareto frontier of best-
performing configurations.

The neural network training was carried out using the Python
bindings provided by PyTorch using initial and final states of 106
simulations on road segments with randomly generated initial
states. As cluster fast-forwarding is applied to individual road seg-
ments only, each of the simulations executed to generate training
data simulate vehicles on a single road segment comprised of one
or more lanes. A 9:1 split was used to form the training and test
sets. After preliminary experiments, we chose the Adam optimizer
for training. The relative reduction of the mean squared error was
evaluated every 100 epochs, up to a maximum of 100 000 epochs.
Once the relative reduction remained below 10−5 for more than
500 epochs, the training was terminated. All running time measure-
ments were executed on an Intel Core i5-7400 CPU with 16 GiB of
RAM, using the C++ bindings provided by the LibTorch library.

We explore the following parameter values for road segments:
number of lanes ∈ {1, 2, .., 5}, number of vehicles ∈ {1, 2, .., 5},
speed limit ∈ {10, 20, .., 50}m/s, size of independence interval ∈
{10, 20, .., 300}𝑠 . For the vehicle counts and speed limits, we experi-
ment with two training approaches: a) training a separate neural
network for each possible parameter value, and b) training a joint
network that receives the parameter value as an input. Similarly,
we train separate and joint networks for car-following and lane-
changing. A separate neural network is trained for each lane count.

Our experiments cover feedforward networks of the following
configurations: total number of neurons in the hidden layers ∈
{30, 60, 120, 240, 480}, hidden layers ∈ {2, 3}, activation functions:
Sigmoid, Tanh, ReLU, Leaky ReLU.

In Figure 2, we relate the prediction error to the average predic-
tion time per vehicle. The error is determined as the geometric mean
of the absolute errors in the predicted lane number ∈ {0, 1, ..}, the
velocity in m/s, and the displacement on the lane in m. We also indi-
cate the Pareto frontier of best-performing configurations. Table 1
shows the five Pareto-optimal configurations with the lowest mean
errors, listing the type and total number of neurons in the hidden
layers, number of hidden layers, and joint or separate networks for
different models, numbers of vehicles, and speed limits. The results
show the trade-off between accuracy and cost: separate networks
for individual parameter values tend to provide higher accuracy at
the cost of increased prediction times. The Pareto frontier contains
only one configuration where a single neural network covers both
models, all numbers of vehicles, and all speed limits. This network

Table 1: The five Pareto-optimal neural network configura-
tions associated with the lowest mean error.

Neurons Hidd. Models Veh. Speed Error Time
layers Lim. [𝜇s]

240 Sigmoid 2 sep. sep. sep. 0.81 0.59
120 TanH 2 sep. sep. sep. 0.89 0.33
60 TanH 2 sep. sep. sep. 0.93 0.28

120 Sigmoid 2 sep. sep. joint 1.07 0.18
120 TanH 2 joint sep. sep. 1.14 0.18

Table 2: Road network simulation performance with purely
time-driven execut. and fast-forwarding (FF).

#Vehicles, Running time, Speedup
Gen. rate Time-driven Single-vehicle FF Cluster FF
10 000, 1 40.7s 33.0s, 1.23 20.5s, 1.99
10 000, 16 48.6s 42.3s, 1.15 26.7s, 1.82
20 000, 1 91.9s 76.0s, 1.21 44.4s, 2.07
20 000, 16 117.6s 104.4s, 1.13 77.3s, 1.52
40 000, 1 196.1s 163.4s, 1.20 91.7s, 2.14
40 000, 16 238.5s 223.8s, 1.07 207.6s, 1.15

achieved a comparatively large mean error of 2.94, but a low pre-
diction time of 0.036𝜇s. As the five configurations with the lowest
error rely on only two layers and at most 240 neurons, we see that
larger networks do not necessarily provide higher accuracy.

For ease of implementation of the road network experiments
presented in the next section, we chose the configuration shown
in the last row of Table 1, which considers car-following and lane-
changing jointly.

4.2 Road Network Simulations
To determine the performance benefits of cluster fast-forwarding,
we performed traffic simulations using a simplified variant of the
city-scale microscopic traffic simulator CityMoS [12]. All simula-
tions and predictions were executed sequentially, making use of a
single core of an Intel Core i5-7400 CPU with 16 GiB of RAM.

We consider a grid network comprised of 64x64 four-way inter-
sections connected by roads 300m in length, each with 4 lanes per
direction. When including the short road segments on the intersec-
tions, the average road segment length is 87.0m. We vary the total
number of vehicles and the number of vehicles generated per time
step. Vehicles follow the shortest path between origin-destination
pairs drawn uniformly at random from the links of the road net-
work. Each run terminates after 10 hours of simulated time, or once
all vehicles have reached their destination. The time step size is
0.1s. We configured the scanning period and horizon to values in
{2, 4, 8, 16, 32}s and {2, 4, 8, 16, 30}s of simulated time, omitting com-
binations where the scanning period is smaller than the horizon.
We show averages across 3 runs each for the best-performing pa-
rameter combinations. As shown in our previous work, auto-tuning
could be applied to choose parameters at runtime.

Table 2 lists the running time and speedup over purely time-
driven runs. The peak number of vehicles varied between 6 241 and
38 465. Generally, cluster fast-forwarding achieves higher speedup
than single-vehicle fast-forwarding, particularly at large vehicle
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Figure 3: Histogram of the relative percentage error in the
vehicles’ travel timeswith cluster fast-forwarding compared
to purely time-driven simulation.

counts. Cluster fast-forwarding benefits from more frequent oppor-
tunities to fast-forward agents, which can be measured by the total
number of time-driven vehicle state updates avoided throughout
a simulation run. For instance, with 40 000 vehicles and a vehicle
generation rate of 1, the purely time-driven reference simulation
carried out 2.61 × 108 state updates. Single-link fast-forwarding
reduced the number of updates by 13.7%, while cluster fast-forward
reduced the number by 49.8%.

To evaluate the effect of the cluster fast-forwarding on the fidelity
of the simulation results, Figure 3 shows a histogram of the relative
percentage error in the individual vehicles’ travel times for a total
number of 40 000 vehicles and a generation rate of 1. The average
travel time in the time-driven simulation was 646.82s. The vertical
line indicates the mean relative percentage error of 2.67%. The 99%
quantile is 6.46%. Single-vehicle fast-forwarding entailed a lower
relative error of 0.02%, but as shown above, achieved much lower
performance than cluster fast-forwarding.

5 CONCLUSIONS
We proposed cluster fast-forwarding as a method to accelerate
microscopic traffic simulations using neural network-based predic-
tions of vehicle states on non-interacting road segments. Experi-
ments with different neural network configurations show the trade-
off between prediction accuracy and running time. Further, our
simulation experiments show that cluster fast-forwarding success-
fully improves on the limited performance gains of single-vehicle
fast-forwarding for higher traffic densities. The resulting reduction
in simulation running times comes at the cost of a slight increase in
the deviation from the results of a purely time-driven simulation.

The cluster fast-forwarding approach is amenable to paralleliza-
tion among road segments without affecting the results. Parallel
traffic simulations on hardware accelerators [10, 11] typically hold
the simulation state in accelerator memory, which may enable hard-
ware acceleration of the predictions without introducing additional
data transfers.
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