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Abstract—Agent-based simulations relying on synchronous
state updates using a fixed time step size are considered attractive
candidates for parallel execution in order to reduce simulation
running times for large and complex scenarios. However, if
the underlying models are formulated with respect to con-
tinuous time, a time-stepped execution may only approximate
the strict model semantics. To simulate continuous-time agent-
based models, parallel discrete event algorithms can be applied.
Traditionally those are based on logical processes exchanging
time-stamped events, which clashes with the properties of models
in which tightly coupled agents frequently access each other’s
states. To illustrate the challenges of such models and to derive
a solution, we consider the domain-specific modeling language
ML3, which allows modelers to succinctly express transitions
and interactions of linked agents based on a continuous-time
Markov chain (CTMC) semantics. We propose an optimistic
synchronization scheme tailored towards simulations of fine-
grained interactions among tightly coupled agents in highly
dynamic topologies. By restricting the progress per round to
at most one state change per agent, the synchronization scheme
enables efficient direct read and write accesses among agents. To
maintain concurrency given actions that depend on dynamically
updated macro-level properties, we introduce a simple relaxation
scheme with guaranteed error bounds. Using an extended variant
of the classical susceptible-infected-recovered network model, we
demonstrate that the proposed synchronization scheme acceler-
ates simulations even under challenging model configurations.

Index Terms—parallel simulation, agent-based simulation,
multi-agent simulation, optimistic synchronization

I. INTRODUCTION

Agent-based simulation is an established method to study
systems of interacting entities in domains such as sociol-
ogy [1], traffic engineering [2], or systems biology [3]. A
simple approach to the time advancement in agent-based
simulations is taken by synchronous time-driven simulations,
in which all agents’ state transitions occur concurrently at
discrete points in logical time. This approach provides ample
opportunities for parallel execution: since the agents’ tran-
sitions at a given time step are logically concurrent, the
transitions can be assigned to different processing elements to
reduce execution times. However, in many real-world systems,
transitions may occur at arbitrary points in time [4]. If agent-
based models are thus specified with respect to continuous
time, an execution using the limited granularity given by a

fixed time step size may cause deviations from an execution
according to the strict model semantics. Further, conflicts may
occur among the actions taken by agents within a time step [5].
To resolve conflicts, a time-driven simulation cannot rely on
the precedence relation defined by the fine-grained transition
times available in a continuous-time simulation. Further, the
time step size defines a lower bound on the propagation
delay of effects throughout the simulation [6], whereas in a
continuous-time formulation, no such bound must be imposed.

On the other hand, while a continuous-time execution
can represent the model semantics to machine precision,
when considering parallelization to reduce execution times,
a synchronization scheme is required to satisfy the resulting
stricter ordering constraints. A variety of parallel discrete-
event simulation (PDES) algorithms have been developed to
ensure the efficient and correct execution of simulation models
oriented typically around logical processes that exchange
events specified in continuous logical time [7].

A challenge to an efficient execution using PDES is given
by the tightly interlinked life courses of communities of agents
encountered in many agent-based models [8]. To cater to
this “tight coupling”, multi-agent modeling and simulation
environments such as Repast [9], Netlogo [10], or Mesa [11]
allow agents to directly carry out read and write accesses to
the attributes of other agents.

To illustrate the challenges of parallel simulation of tightly
coupled agent-based models and to derive a solution, we
consider the domain-specific modeling language ML3 [12],
which allows modelers to succinctly express transitions and
interactions of linked agents based on a continuous-time
Markov chain (CTMC) semantics. We highlight key properties
of ML3 models to determine the requirements for an efficient
parallel execution and present a novel optimistic synchroniza-
tion algorithm. In optimistic PDES, some computations are
carried out speculatively without regard for potential violations
of ordering constraints. If a violation occurs, the affected
simulation state is rolled back to a previous correct state. To
cope with the tight coupling among separate agents’ states, the
algorithm follows two main ideas. Firstly, agents may directly
read and write other agents’ states, without the exchange of
events or messages as used in traditional PDES approaches.
Secondly, a synchronous mode of time advancement restricts
both the temporal deviation among processors and the rollback
overhead. The proposed algorithm is evaluated using a variant978-1-6654-3326-6/21/$31.00 ©2021 IEEE



of a classical epidemic network model [13], which we extend
to stress the performance-critical aspects of ML3 models.

We summarize our contributions as follows:
• We describe performance-critical aspects of ML3 models

and their implications for parallelization.
• We propose and detail a synchronous optimistic execution

scheme for models of tightly coupled agents.
• Performance measurements under challenging model

configurations using scenarios populated by up to 226

agents demonstrate a speedup of up to 5.5 on 16 cores
compared to an efficient sequential baseline.

The paper is structured as follows: in Section II, we de-
scribe key properties of the considered class of models based
and their implications for parallel execution. In Section III,
we propose an optimistic synchronization scheme tailored to
the identified requirements. In Section IV, we describe our
implementation of the algorithm and our sequential baseline.
In Section V, we evaluate the performance of the algorithm. In
Section VI, we discuss related work in optimistically synchro-
nized discrete-event simulation and agent-based simulation.
Section VII summarizes our results and concludes the paper.

II. ANALYSIS

In ML3, the model behavior is specified using rules that
define the possible agent state transitions in terms of their
conditions, timing, and effects. Conditions act as guards to
decide in which situation a transition may occur. Transitions
for which all conditions are satisfied take place after a waiting
time specified as a deterministic or stochastic delay in logical
time. As a distinguishing feature of ML3, waiting times are
defined in the form of rates of an underlying Continuous
Time Markov Chain (CTMC). For instance, the following rule
applies to agents with an incoming above 50000 units, and the
associated transition increments the variable v at a rate of r:

Agent
| ego.income > 50000 // guard expression
@ r // waiting time expression
-> v := v + 1 // effect

The specific times at which such rate-driven transitions
occur are determined according to pseudo-random numbers
drawn from exponential distributions. A transition occurring
at an agent may instantaneously modify other transitions’
rates at the current agent or other agents, which requires a
reconsideration of future transition firing times. This model
of execution is inspired by stochastic simulation algorithms of
which key variants were originally proposed by Gillespie [14]
to simulate biochemical reaction networks.

Two specific algorithms in this category include the Direct
Method [14] and the Next Reaction Method [15]. The Direct
Method and its variants select the next transition directly based
on the current transition rates: similarly to the generation of
pseudo-random numbers adhering to an empirical distribution,
a uniform random variate determines the index of the next
transition depending on their relative rates. A second uniform
random variate is transformed according to the sum of all

transition rates to generate the transition time. As each se-
lection of a transition and its time requires the transition rates
to be current, the Direct Method suggests a serialized mode of
execution. As an alternative, the Next Reaction Method draws
tentative timestamps for all possible transitions. The transition
with the earliest timestamp is carried out, which may affect
the rates of other transitions. Such dependent transitions are
then rescheduled according to the updated rates. The Next
Reaction Method may discard many tentatively scheduled
transitions if the degree of coupling among agents is high.
However, the scheduled events provide valuable information of
the time and agent assignment of future transitions assuming
independence of the transition rates. Since this information
permits a speculative parallel execution of transitions, we rely
on the Next Reaction Method throughout the paper.

The execution of ML3 models using the Next Reaction
Method can be viewed as a special case of discrete-event simu-
lation, which may suggest the use of well-established methods
for parallelization. However, we identify three properties of
ML3 models and, more generally, tightly coupled agent-based
models that pose challenges for traditional PDES approaches:

1) Direct read and write accesses across agent boundaries
to support tightly coupled life courses of agents,

2) State-dependent creation and removal of links and agents
to account for the dynamic structure of systems,

3) Global access to the state of a population of agents to
calculate macro-level properties which may influence the
agent behavior at the micro level [16].

We briefly illustrate the occurrence and implications of each
of these properties in turn, relying on an ML3 formulation of a
migration model [12]. The model, which represents decision-
making processes involved in migrations from Senegal to
France, was originally developed in Netlogo [17]. The model
excerpts shown are slightly simplified for brevity.

Direct state access across agent boundaries: as do other
agent-based modeling and simulation environments, ML3 per-
mits read and write accesses to arbitrary agents as part of the
guard expressions, waiting time expressions, and effects that
make up a rule. The following excerpt is part of the “effect”
component of a rule in the migration model:
(ego.friends + ego.friends.collect(alter.friends) -
ego.familyMembers() - ego).filter(ego.canMarry(alter))

The expression filters an agent’s friends as well as its
second-degree friends according to the predicate function
canMarry(), which in turn accesses the agents’ attributes.
The accesses occur instantaneously during the transition. In
a scenario in which an agent has exactly ten direct friends,
each evaluation of the expression requires accesses to up to
one hundred friends and friends-of-friends. Considering the
execution of such a transition in a parallel simulation, we note
that the agent must be able to access the other agents’ states
at the logical time of the transition. This can be achieved by
maintaining a history of previous states, rolling back agents
to previous states when required by write accesses, e.g., using
the classical Time Warp algorithm for optimistic PDES [18].



However, the Time Warp algorithm assumes that the interac-
tions among simulation objects occur through the exchange of
events in a message-passing style, which would require a “read
request” and “read response” event to carry out a single read
access between two agents. Further, the two events involved in
a read access would carry the same timestamp as the current
transition. The resulting tight temporal coupling among the
involved logical processes runs counter to the asynchronous
mode of execution defined by the Time Warp algorithm.

State-dependent creation and removal of links: at a
transition, an agent may create and remove links based on
its own state, the state of other agents, or randomly. In the
following excerpt from the migration model, an agent moving
to a new address creates links to the current inhabitants of the
address as well as the inhabitants of the neighboring addresses:

ego.friends += ?address.inhabitants +
?address.neighbors.collect(

alter.inhabitants) - [ego]

The resulting topology evolves dynamically over the course
of the simulation, which has two key consequences for paral-
lelization: firstly, if the simulation state is partitioned into log-
ical processes, frequent repartitioning is required to minimize
attribute accesses across process boundaries. In the presence
of randomized link creations, the proportion of accesses across
logical processes may be large even with frequent repartition-
ing. Secondly, even if a specific rule restricts its accesses to
direct neighbors of an agent a0, topology information cannot
easily be exploited to determine independent transitions, as a
concurrent transition of an agent a1 may create or remove a
link to a1, which would invalidate the topology information.

Globally accessing the state of a population of agents:
state variables of entire populations of agents may be accessed
by an agent. As an example, in the migration model, a migrant
randomly selects a new address from a global set of all
addresses, filtering by country and current inhabitation:

Address.all.filter(alter.location = "host country" &&
!alter.hasInhabitants()).random()

Each of the addresses is represented as an agent. For this
expression to be evaluated correctly, all previous updates to the
set of addresses must be visible. More generally, by imposing
ordering constraints among transitions at separate agents, the
presence of accessing globally entire populations of agents
can severely limit the concurrency among transitions. When
strictly adhering to the model semantics, the extreme case of
this type of global access at every transition implies a complete
serialization of the simulation.

Overall, while the rate-based transition times in ML3 mod-
els necessitate the use of an optimistic approach to syn-
chronization, the tight and difficult-to-predict coupling among
agents suggests a scheme that emphasizes the efficiency of at-
tribute accesses and limits the frequency and cost of rollbacks.
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Fig. 1. Example of the transitions (vertical lines) of four agents ai scheduled
after a global synchronization point at logical time t. Initially, the event
horizon limiting the speculative execution of transitions is set to t+ τ0.
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Fig. 2. Scheduled transitions and their effects. When executed in parallel,
agents may carry out their transitions in any order. Our synchronization
scheme guarantees that of the accesses to a1 caused by the transitions of
a0, a1, a2, only the earliest access takes effect and is committed.
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Fig. 3. Final scheduled transitions (wide lines) and committed agent accesses
(thin lines) at the end of the round. Throughout the processing of transitions,
the effective event horizon t+τ has been gradually reduced to guarantee that
at most one access per agent is committed. In the example, the transitions at
agents a0 and a3 and the associated write accesses are committed, whereas
the transitions of agents a1 and a2 are deferred to future rounds.

III. SPECULATIVE SYNCHRONIZATION SCHEME

Based on the properties of ML3 models detailed in the
previous section, our central idea is to acknowledge that the
considered models represent tightly coupled systems in which
a typical transition directly and instantaneously affects several
agents scattered throughout the topology, and in which the
propagation of effects over time can be swift and difficult to
predict. As a consequence, we propose a synchronous scheme
that, instead of emphasizing the maximization of parallelism,
aims to avoid some of the overheads for state accesses and
rollbacks that may be incurred by more aggressive speculative
schemes. Our synchronization scheme is based on the simple
observation that starting from a global synchronization point,
the earliest access in logical time at an agent can never be
invalidated by another access to the same agent.



A. Overview

The simulation takes a round-based approach, wherein we
ensure that at the end of each round, only the earliest access
at each agent is committed. Hence, the delta in logical time by
which the simulation can advance throughout a round depends
on the interactions among the agents. We illustrate the desired
behavior of the round-based execution on the example of
simulation populated by four agents (cf. Figure 1). The current
simulation time t is the timestamp of the earliest scheduled
transition. During the current round, we consider all transitions
up to t+τ0 for execution, where τ0 is a tunable initial window
size in logical time. Figure 2 shows the operations associated
with the agents’ transitions. For simplicity, we assume that all
attribute accesses take place in read and write mode. While
the operations of agents assigned to a single thread occur in
order of ascending timestamps, the order of operations across
threads is arbitrary. Importantly, multiple transitions executed
speculatively within the round may access the same agent.
Finally, Figure 3 shows the desired outcome of the round: the
final window size τ guarantees that we commit exactly those
transitions whose accesses occurred earliest in logical time for
all accessed agents, along with any involved write accesses.
Further, the scheduling of any events speculatively scheduled
by the newly committed transitions takes effect.

B. Mechanism

Having illustrated the intended outcome of a synchroniza-
tion round, we now describe the mechanisms by which this
outcome is achieved. Algorithm 1 shows the main loop of
our synchronization scheme as pseudo code. We assume that
agents are assigned to threads by a static partitioning scheme,
e.g., randomly. Each round of simulation begins with a global
reduction to determine the minimum timestamp among all
threads’ scheduled transitions. The initial upper bound on
the timestamp of transitions considered for execution, the
event horizon is initialized based on the minimum times-
tamp and the tunable initial window size τ0. Our choice of
τ0 is discussed in Section V. Each thread populates a list
window_transitions holding all local transitions scheduled
for execution before the initial event horizon (line 4). Subse-
quently, each thread executes the transitions in the list in order
of ascending timestamp. The timestamp order of execution is
exploited in line 6 to terminate the execution of transitions
early if the event horizon does not permit any further progress
in the current round.

As will be discussed below, the agent accesses carried out
during transitions reduce the event horizon to guarantee that
only at most one access at each agent is committed. While
executing transitions, each thread populates an access list of
agents accessed by the local agents, which may include agents
assigned to other threads. By storing the agents at the thread
the access originated from, the need for locking the access
lists is avoided.

A global barrier ensures that the final event horizon of
the current round has been determined (line 9). Now, all
transactions with timestamps lower than the event horizon are

Algorithm 1: Main speculative parallel simulation loop.
1 while !termination criterion do
2 event horizon ← get global min timestamp() + τ0
3 foreach thread in parallel do
4 window transitions ← “local events before event horizon”
5 foreach event in window transitions do
6 if event.timestamp ≥ event horizon then
7 break

8 event.execute()

9 barrier()
10 foreach event in window transitions do
11 if event.agent.earliest access < event horizon then
12 commit transition, enqueue new events

13 else
14 roll agent back to previous state

15 foreach list in access lists do
16 foreach agent in list do
17 if agent.is local() and
18 agent.earliest change < event horizon then
19 commit transition, enqueue new events

20 else
21 roll agent back to previous state

22 barrier()

Algorithm 2: Wrapper for agent accesses.
1 procedure Agent::try_access(now):
2 lock(mutex)
3 if now < earliest access then

// access is earliest in round so far

4 if earliest access 6=∞ then
5 self ← old self // roll back previous access

// defer transition associated with
// previous access to future round

6 atomic min(&event horizon, earliest access)

7 perform access()
8 earliest access ← now

9 else
// access not earliest in round,
// defer associated transition

10 atomic min(&event horizon, now)

11 unlock(mutex)

committed, and new transitions scheduled in the process are
enqueued. Agents whose transitions occurred at or after the
event horizon are rolled back. Similarly, agent accesses that
occurred earlier than the event horizon are committed and all
other accesses are rolled back. To identify accessed agents,
each thread iterates through all the threads’ access lists. As
the access lists are not written to, no locking is required. Once
all threads have reached the final barrier, the simulation has
advanced to the event horizon and may enter a new round.

In the pseudo code of Algorithm 1, the updates of the event
horizon within a round were implicit. Algorithm 2 shows this
aspect in detail: on an agent access, a per-agent mutex is
obtained. If the new access arrives at the earliest observed
logical time, the access is carried out, displacing a prior access



with larger timestamp, if any. Otherwise, the new access fails
and the event horizon is updated to defer the new access
to a future round, which globally restricts the processing of
transitions at all threads.

We point out the close relationship of our synchronization
scheme to the conflict resolution mechanisms used in time-
driven agent-based simulations, in which all agents concur-
rently advance their states from logical time t to t + τ . A
number of approaches have been proposed and evaluated to
resolve the potential conflicts that may emerge when accessing
limited resources, e.g., if multiple agents move to the same
location in the simulation space [5], [19], [20]. In a “push”
approach, agents register their desired state accesses at the
simulation objects, potentially displacing previously registered
agents based on static or dynamic priorities. At the end of
a round, the highest-priority registered agent gains access to
the object. This process repeats until all agents have gained
access to an object or given up, at which point logical time is
increased to t+τ . Both in this procedure and in our optimistic
synchronization scheme, agents concurrently attempt to access
other simulation objects, potentially displacing each other. In
both cases, a round concludes once at most one access per
entity can be committed, deferring displaced agent accesses to
a future round. The key difference between conflict resolution
in time-driven simulations and our synchronization scheme lies
in the definition of the access priorities: in the considered
class of agent models, the timestamps in continuous time
associated with transitions can be interpreted as priorities
prescribing an access order. In contrast, given a model that
assumes concurrent transitions of all agents at fixed time steps,
priorities within each time step must be defined separately
based either on model properties or according to some other
criterion, e.g., based on pseudo-randomness [5].

C. Global State Access

We briefly describe our simple mechanism to support glob-
ally accessing state variables of all agents to calculate a
macro property of the system, e.g., the number of agents
being in a specific state. Let us consider an extreme case
in which all agents’ transition rates depend on a macro
property that is updated during every transition. In addition
to requiring a rescheduling at all agents after every transition,
every transition depends on the transition prior to it, resulting
in a complete serialization of the simulation. Thus, as our
intention is to execute transitions in parallel, a strict adherence
to these global updates is infeasible. Instead, we approximate
such global dependencies by notifying dependent agents only
once the variable has changed by a configurable amount.

In the sequential case, this type of approximation is trivially
implemented by storing the value of the global variable during
the last notification and triggering new notifications once the
change exceeds the threshold. However, during speculative
parallel execution, the threads alter the global variable in an
unpredictable order and may roll back prior changes. To iden-
tify the exact point in time at which the threshold is crossed,
we maintain a variable abs_change holding the sum of the

absolute changes to the global variable, independent of their
sign. This variable provides an upper bound on the amount of
change of the global variable in either positive or negative
direction. During a parallel simulation round as described
previously, abs_change is updated atomically by all threads.
We terminate the round at the point tthreshold in logical time
when abs_change crosses the configured change thresh-
old, which is a potential point in time at which the actual
change threshold may have been crossed. After committing
and rolling back transitions, the value of the global variable is
consistent with the sequential simulation at tthreshold. We can
now check whether the configured threshold has in fact been
crossed by the transition that terminated the round, and trigger
notifications if needed. Finally, abs_change is set to the
actual change and the next round of simulation commences.
This simple scheme guarantees notifications at exactly the
same points in logical time as in the sequential simulation. In
Section V, we explore the sequential and parallel simulation
performance in the presence of an approximately updated
global variable that represents a macro property on which the
micro behavior of the agent-based model depends.

IV. IMPLEMENTATION

Our starting point is a sequential C++ simulator implemen-
tation created from scratch. The simulator employs Gillespie’s
Next Reaction Method: an event is scheduled for each rule
whose conditions are satisfied, according to the current transi-
tion rate. The simulation advances by executing the transition
associated with the earliest scheduled event, which may entail
updates to zero or more conditions or rates and subsequent
(re-)scheduling of events.

We implemented two mechanisms to avoid executing events
that have been retracted in order to reschedule transitions:
1. removal from the pending event list, and 2. skipping based
on an agent attribute. The first mechanism requires a data
structure that permits efficient element removal. We employed
the set container from the C++ standard template library to
represent the pending event list, which is implemented as a
red-black-tree and allows for logarithmic-time insertion and
removal. In the second mechanism, events are stored in an
STL priority_queue container, which internally relies
on an implicit heap and in our experiments achieved vastly
faster element insertion, but does not support efficient element
removal. Each agent possesses one attribute per rule that holds
the timestamp of the next transition. Whenever an event is
scheduled or retracted, the corresponding attribute is updated.
Thus, when considering an event for execution, the simulator
can now compare the timestamp of the earliest event with the
timestamp stored at the corresponding agent to decide whether
the event has been retracted and should thus be skipped. With
this second approach, an explicit removal of events is avoided,
at the cost of retaining many of the retracted events in the list.
Our experiments rely on the second mechanism, which during
initial tests consistently outperformed explicit event removal.

The agent states are stored in two arrays, one holding the
“current” states at logical time t, i.e., the lower bound of



the current window, and one holding the projected states to
be determined during the current round. At the end of a
round, the projected states are either rolled back to time t,
i.e., discarded, committed by being copied to form the new
“current” states at the lower bound of the next window. As
described in Section III, during an agent access, the target
agent may be rolled back. By restricting the state history to
only the state at t, rolling back an agent identified by agent_id

involves only the trivial and inexpensive assignment:

*this = previous_states[agent_id];

To achieve deterministic results, each agent draws pseudo-
random numbers from a separate random number stream
generated by the Xoroshiro128** generator [21], which passes
the BigCrush test suite from the TestU01 library [22]. Since
rollbacks require copying the previous random number gener-
ator state as part of the overall agent state, both the memory
consumption and execution time of the simulation benefit from
the generator’s comparatively small state size of 128 bits.

For multi-threading, we employ POSIX threads and the
associated facilities for barriers and mutual exclusion. Threads
are pinned to physical CPU cores to improve cache usage
and to avoid unnecessary non-uniform memory accesses when
using fewer than the available number of cores. For atomic
access to the shared upper bound on the current window
(event_horizon), we employ the atomic operations library
from the C++ standard template library.

V. EXPERIMENTS

A. Setup

To evaluate the benefits and limitations of the proposed
synchronization scheme, we constructed a simulation model
that emphasizes the hard-to-parallelize properties of tightly
coupled agent-based models as detailed in Section II. The
model is based on an agent-based formulation of the clas-
sical susceptible-infected-recovered model as described by
Macal [23], to which we introduce rate-based transition prob-
abilities in continuous time: in place of the per-step transition
probabilities of the original time-driven model, transition times
are drawn from an exponential distribution according to rates
dynamically updated based on the neighboring agents’ states.
An agent is infected by its neighbors at a rate equal to its
number of infected neighbors. Recovery from an infection and
the return to the susceptible state take place at a rate of 1.

Initially, each agent creates mutual links with 8 unique
neighbors chosen uniformly at random. To exercise the ca-
pability to dynamically track inter-agent dependencies, the
agents randomly move within the topology by cutting the ties
to their current neighbors and selecting a new set of 8 random
neighbors. The movement rate can be configured to depend
on the overall number of infected agents, which represents the
challenging case of a macro property changing when agents
are newly infected or recovered. Given the proportion p of
infected agents, an agent moves at a rate of 0.1× (1− p). If
the macro property is not taken into account, the movement
rate is constant at 0.1.

Our experiments were conducted on a system equipped
with two 16-core Intel Xeon E5-2683v4 CPUs and 256GiB of
RAM, running CentOS Linux 7.9.2009. Hyperthreading was
disabled. We plot averages of at least 5 runs for each data point
with 95% confidence intervals. Where not otherwise stated,
the simulation end time was scaled inversely with the number
of agents to achieve tolerable execution times even for large
populations. Sequential simulation runs showed that the events
in the simulation are fine-grained, with processing times per
transition of 2 to 10µs including all overheads.

The correctness of the parallelized implementation was
verified by direct comparison of agent states and timestamps
of scheduled transitions at the end of the simulation, which
were observed to be identical between the sequential and
parallel simulations. In the parallel simulations, agents are
assigned to threads by an ascending identifier. Since links
among agents are created and changed uniformly at random,
this is equivalent to a static random partitioning.

B. Results

In our synchronization scheme, the maximum progress per
round depends on the initial window size τ0. The choice of
τ0 involves a model-specific tradeoff between the opportunity
for parallel processing on the one hand, and the overhead of
executing events that are subsequently rolled back on the other
hand. To account for the simulation conditions at runtime, we
periodically set τ0 to a multiple w of the effective window
size τ observed at the end of a completed round. As the
window size can only decrease during a round, w should
be set to a value above 1 to avoid a gradual decay of τ0
towards 0. We observed only little effect of the frequency of
the adaptation and thus used a fixed period of 100 rounds.
Figure 4 shows the speedup achieved by parallel execution
of the modified susceptible-infected-recovered model using 16
threads, varying the window size factor w. The global counter
of infected agents was disabled. We observe that substantial
speedup is achieved beyond 218 agents at all values of w.
Simulations using values of 2.5 and 5.0 achieve somewhat
higher performance than those using 1.25. The difference
diminishes with increasing agent counts. The choice of w
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Fig. 4. Speedup over sequential execution depending on the window size
factor using 16 threads. The smallest window size of 1.25 results in an overly
conservative execution. Best performance was achieved using a factor of 2.5
or 5.0. We note that the simulation performance is quite robust to changes in
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threads. Performance increases are observed at 218 agents and beyond. Due to
non-uniform memory access among the two 16-core CPUs in our test system,
peformance does not improve beyond 16 threads.

strongly affects the rollback ratio, i.e., the number of rollbacks
per transition. In a simulation of 220 agents with w = 1.25,
the ratio is only 0.27. With w = 2.5 and w = 5.0, the ratio
increases to 1.43 and 3.84, i.e., the number of transitions that
are rolled back exceeds the number of committed transitions.
On the other hand, larger values of w still allow for more
transitions to be committed in each round, decreasing the
number of rounds to complete the simulation. When setting
w to 1.25, 2.5, and 5.0, a total of 2 845 400 transitions were
committed within 25 942, 18 467, and 17 237 rounds.

Figure 5 shows speedup results when varying the number
of threads, with the global counter of infected agents disabled.
At 218 agents, most parallel configurations start to outpace the
sequential execution, with the exception of the configurations
using 2 and 32 threads. With 2 threads, the overhead involved
in executing events speculatively is only amortized by parallel
execution around 222 agents and beyond. Even at 226 agents,
the speedup is only 1.1. In contrast, the larger parallelism of
the runs with 32 threads enables substantial performance gains
at large agent counts, with a maximum speedup of 4.9 at 226

agents. The highest observed speedup of 5.0 was achieved
using 16 threads, which coincides with the number of physical
cores on each CPU socket of our test system. We ascribe the
slightly lower performance with 32 threads to the non-uniform
memory access among cores on different sockets. Overall, we
observe that although the speedup scales far from linearly
with the number of CPU cores, our synchronization scheme
substantially accelerates simulations of large populations.

Figure 6 compares the number of committed transitions per
second wall-clock time with the global counter disabled and
enabled, i.e., with or without taking into account the macro
property of the number of infected agents an individual’s
movement rate When enabled, all the agents’ movement rates
are newly calculated every time the number of infected agents
has increased or decreased by 1% of the overall agent count.
To avoid performance artifacts depending on the simulation
duration in logical time, in contrast to the previous experi-
ments, the simulations were terminated at 5 units of logical
time independently of the number of agents. As expected,
the induced recalculation of rates and rescheduling of events
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Fig. 6. Committed transitions per second wall-clock time with and without a
global counter updated whenever the number of infected agents has changed
by 1% of the total agents. While the notification overhead reduces the absolute
processing rates, the speedup over the sequential case is largely maintained.

decreases performance both in the sequential and parallel case.
At 226 agents, the commit rate is reduced by about 16% from
152 000 to 128, 000 transactions per second in the sequential
case, and by 10% from 780 000 to 700 000 in the parallel case.
Although the absolute performance is lower when considering
the macro property, a higher speedup of 5.5 is observed.

VI. RELATED WORK

The proposed synchronization scheme is closely related to
Steinman’s classical breathing time buckets algorithm [24].
Breathing time buckets is a synchronous algorithm in which
the processing within each round is bounded by the times-
tamp of the earliest newly created event. Any computation
beyond this point in logical time, referred to as the event
horizon, is rolled back. Newly scheduled events are only sent
among logical processes at the end of a round, leading to an
execution scheme that alternates between the processing and
exchange of events. Our approach differs in its deviation from
a purely event-oriented representation of state changes and in
its definition of the event horizon: as detailed in Section II,
the considered agent-based models combine individual state
transitions at an agent with read and/or write accesses as well
as potential rescheduling operations at neighboring agents,
all occurring at the same point in logical time. Since the
breathing time buckets algorithm delays event exchanges to the
end of a round, any such combined operation would require
multiple rounds to complete. Instead, our algorithm permits
direct access to the neighboring agents’ states. Such inter-
agent accesses may be invalidated throughout the processing
of a round, requiring rollbacks. To minimize the required
state history per agent and to avoid costly interactions among
threads to signal access invalidations, the algorithm maintains
the invariant that at the end of a round, only at most one access
per agent is committed. As an agent may only schedule events
targeting itself, the creation and subsequent execution of an
event within the same round would constitute two accesses to
the agent, which is not permitted in our algorithm. Thus, our
definition of event horizon is stricter than the one used in the
breathing time buckets algorithm.



Several mechanisms for synchronization and state accesses
have been proposed that depart from the classical parallel and
distributed simulation paradigm wherein simulation objects
are assigned to logical processes and all interactions among
objects are represented in the form of event exchanges. Ghosh
and Fujimoto proposed the concept of space-time memory,
which introduces a versioning of variables in Time Warp
simulations to correctly handle concurrent accesses in shared
memory settings [25]. Chen et al. aggregate logical processes
to groups within which variables can be accessed directly [26].
Marziale et al. propose the dynamic combination of simulation
objects based on runtime information regarding the frequency
of mutual accesses [27]. Pellegrini et al. described a scheme
that achieves a transparent versioning of global variables [28].
Substantial performance gains are achieved by avoiding some
of the event exchanges required in traditional implementations.
Ianna et al. proposed an optimistic parallel simulation system
in which all threads obtain events from a single shared list [29].
Events are processed without a fixed mapping between threads
and logical processes or simulation objects, while still avoiding
conflicting state accesses. Pellegrini and Quaglia presented a
mechanism for transparent access to the state of arbitrary sim-
ulation objects in optimistic simulations [30]. This is achieved
by an operating system-level redirection of memory accesses.
To guarantee correctness, the current event is suspended and
a new event is scheduled that handles the actual state access.
As in our synchronization scheme, these approaches loosen the
mapping between threads and simulation objects encountered
in traditional PDES approaches. Our work differs in avoiding
the use of events to represent state accesses across objects
altogether, and in the synchronous execution scheme that
reflects the tightly coupled nature of the agent-based models.

In 2020, Chen et al. presented a mechanism for agent
interaction in optimistically synchronized distributed simula-
tions [31] in which interactions are mediated by mailboxes
holding timestamped messages. Since our work assumes a
shared memory execution environment, agent interactions take
place without mediation. By permitting at most one access to
each agent in a round, we avoid maintaining a state history
similar to a mailbox beyond a “current” and “projected” agent
state. We leave an exploration of variants of our synchroniza-
tion scheme with per-agent state histories within each window
to future work.

The parallel and distributed execution of the stochastic
simulation algorithm in its traditional domain of biochemical
systems has been explored by several authors. The Next
Subvolume Method, which is a spatial extension of the Next
Reaction Method based on a regular grid, has been executed
using variants of the Time Warp algorithm [32]–[34]. As in our
work, constraining the optimistic execution proved beneficial
for performance [34]. Similarly, Goldberg et al. employ Time
Warp to execute the Next Reaction method. In contrast to
our synchronization scheme, Time Warp requires interactions
among simulation objects to be mediated through events and
allows logical processes to progress asynchronously. Still, a
comparison of the performance our synchronization scheme

when executing ML3 models as compared to the use of a
Time Warp kernel is an interesting avenue for future work.

A variety of methods have been proposed to control the
degree of optimism in speculative synchronization schemes
by limiting the relative progress of logical processes to bal-
ance the exploitation of parallelism and the overhead for
rollbacks [35]–[38]. In our synchronous approach, the progress
within each window is limited by an upper bound in logical
time calculated based on the effective size of a previous win-
dow. During each round, the effective window size is gradually
reduced. Since threads promptly terminate the current round
once the current window size prevents any further progress,
the sensitivity to the initial window size is low (cf. Section V),
avoiding the need for sophisticated mechanisms to determine
a suitable initial window size.

While outside the scope of our present work, some agent-
based models may benefit from efficient mechanisms to sup-
port global range queries, e.g., to select all agents within a
certain age group. Several efficient algorithms for this purpose
targeting distributed environments have been proposed and
evaluated in the literature [39], [40].

Finally, many-core accelerators such as graphics processing
units (GPUs) are a natural fit for parallel simulation of tightly
coupled agent-based systems. The benefits of the presented
approach in the context of agent-based and optimistically
synchronized discrete-event simulation on GPUs [41], [42]
will be explored as part of our future work.

VII. CONCLUSION

We presented a speculative synchronization approach tar-
geting models of tightly coupled agents in continuous time.
By employing a synchronous execution scheme in shared
memory, we enable direct attribute accesses across agents
without mediation through events and restrict the state history
required for rollbacks to only a single entry per agent. On the
example of an extended susceptible-infected-recovered agent-
based model that emphasizes the challenging characteristics of
the considered model class, we showed that our synchroniza-
tion scheme can accelerate simulations of 6.7×107 agents by
a factor of up to 5.5 using 16 cores.

Our experiments focused on agent-based models in which
event times are determined based on dynamically updated
transition rates, and in which state updates at one agent entail
instantaneous accesses to other agents’ attributes. However, the
mechanism for speculative direct access to simulation objects
is general. Thus, a promising direction for future work lies in
exploring the benefits of our synchronous speculative scheme
when executing discrete-event models of other systems of
tightly coupled entities.
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