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ABSTRACT

Discrete simulation is an indispensable approach to investigate systems whose complexity prohibits analytical

modeling and for which real-world experimentation is costly or dangerous. To keep pace with system

models of increasing levels of detail and scope, a simulator’s ability to make full use of the available

hardware, typically through parallel and distributed simulation, is a vital concern. Building on well-studied

synchronization algorithms, the field’s focus has shifted towards aspects such as the avoidance of redundant

computations in ensemble studies and the exploitation of heterogeneous hardware platforms. In this tutorial,

we describe the fundamental notions of parallel and distributed simulation and summarize the main classes

of synchronization algorithms as well their use when applied under the constraints of the domains of

transportation and spiking neural networks. Current research directions and challenges are discussed in

light of the tension between efficiency through specialization and wide applicability through generalization.

1 INTRODUCTION

The behavior of many systems studied in science and engineering can be described in terms of sequences

of instantaneous state changes over time. A discrete simulation imitates such a system computationally by

iteratively updating state variables stored in memory along a virtual timeline. In time-driven simulations,

virtual time advances by a global time step at which all state variables can be updated. In contrast,

event-driven simulations allow updates, referred to as events, to be scheduled with arbitrary timestamps

and targeting only specific simulated entities.

The steady increase in computational power available to researchers and engineers has allowed simula-

tions to support the design, evaluation, and optimization of systems at ever-increasing scales and levels of

detail. Parallel and distributed simulation (Fujimoto et al. 2017) emerged as a family of methods to divide

the execution of an individual simulation run across processors interconnected via shared memory or across

a network. This approach contrasts with the straightforward parallelization of ensemble studies, where full

simulation runs can be assigned to different processors without the need for inter-processor communication

and synchronization. Within the field of parallel and distributed computing, the parallelization of a discrete

simulation run poses unique challenges, since simulation is frequently applied to model systems whose

runtime behavior is highly dynamic and difficult to predict. Hence, the computational workload and the data

dependencies defined by the state updates can only be observed in full while the simulation is executed. A

wealth of literature on synchronization algorithms guarantees adherence to the dynamic data dependencies,

typically relying on the temporal ordering of updates as defined by event timestamps.

Since the breakdown of Dennard scaling from around 2005 onwards, the largest performance gains in

CPU architectures are achieved by increasing the number of parallel cores rather than by increasing the

clock frequency of individual cores. Around the same time, graphics processing units (GPUs) evolved into
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general-purpose compute devices capable of massively parallel computations across thousands of processing

elements. In light of these developments, parallelization has become an inevitable requirement to keep

pace with the computational demands posed by increasingly large and complex simulation models.

Both the choice of suitable parallelization techniques and the achievable performance benefits depend

strongly on properties of the simulation model and the hardware platform. The complex interaction

between aspects such as the workload induced by the model behavior, the synchronization algorithm,

and the hardware-specific cost for inter-processor communication has motivated a wealth of literature

on performance analysis and prediction for parallel simulations (Nicol 1993; Ferscha et al. 1997; Liu

et al. 1999; Perumalla et al. 2005). However, domain-agnostic frameworks that achieve high-performance

parallel execution without the need for manual model-specific optimizations remain elusive. Instead,

domain-specific simulation frameworks provide optimized implementations tailored to the efficient parallel

execution of models in specific areas such as multi-agent systems (Richmond and Chimeh 2017; Piccione

et al. 2019; Cosenza et al. 2021) or spiking neural networks (Tikidji-Hamburyan et al. 2017).

In what follows, we give an overview of the state of the art in methods for scalable simulation. Compared

to previous tutorials and surveys in this context (Fujimoto 2015; Fujimoto 2016), we more directly contrast

classical algorithms using a shared notation and put particular emphasis on recent application domains.

Section 2 introduces the main categories of fundamental parallel and distributed simulation algorithms.

Section 3 illustrates considerations required for efficient parallelization under model-specific constraints on

the examples of applications in transportation and spiking neural networks. In Section 4, we discuss current

research directions on the use of parallel simulation techniques to support overall simulation studies and

the utilization of heterogeneous hardware environments. Section 5 summarizes and concludes the paper.

2 FUNDAMENTAL ALGORITHMS

In a discrete-event simulation, dependencies pertain to events, i.e., changes of the state variables. Naturally,

the result of a sequence of events operating on a state variable can depend on the order in which the events

are executed. Hence, to generate the same results as a sequential reference simulation, a parallel simulation

must maintain this order. Suppose we have two events e0,e1 operating on the same state variable, as well

their timestamps T (e0),T (e1) with T (e0)< T (e1). Then, e0 must be executed prior to e1. This is trivially

guaranteed in a sequential simulation, which iteratively executes the event with the earliest timestamp.

However, in a parallel or distributed simulation, events are dynamically exchanged among processors,

creating the hazard of receiving an event with an earlier timestamp than a previously executed event.

Simply executing such a straggler event may invalidate the simulation results. In parallel and distributed

simulations, the state variables are partitioned to form logical processes (LPs), each of which may be

handled by a separate processor. In this setting, a correct ordering is achieved by satisfying the local

causality constraint: if events pertaining to each individual LP are executed in non-decreasing timestamp

order, causality is satisfied globally.

There are two main approaches to satisfy the local causality constraint. Conservative synchronization

algorithms rule out straggler events entirely based on the processors’ current progress in virtual time and on

minimum delays in virtual time between events and their effects on remote LPs. Optimistic (also referred

to as speculative) algorithms allow straggler events to occur. When a straggler event is received, any

invalidated computations are rolled back. Rollbacks are enabled either by storing previous simulation states

in memory or by reversing events computationally.

A second categorization of synchronization algorithms distinguishes the coordination among processors.

In synchronous algorithms, all processors jointly alternate between the execution of events and synchro-

nization, largely coupling the progress in virtual time among the processors. In contrast, asynchronous

algorithms afford processors a larger amount of freedom to independently advance in virtual time.

In the following, we detail the key ideas and basic principles of the fundamental synchronization

algorithms for parallel and distributed simulation. Table 1 lists well-known algorithms from each of the

categories discussed above.
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Table 1: Fundamental synchronization algorithms for parallel and distributed simulation.

Conservative Optimistic

Synchronous Bounded Lag (Lubachevsky 1989) Breathing Time Buckets (Steinman 1991)

YAWNS (Nicol 1993) Breathing Time Warp (Steinman 1993)

Asynchronous CMB (Bryant 1977; Chandy and Misra 1981) Time Warp (Jefferson et al. 1987)

Time-of-Next-Event (Grošelj and Tropper 1991) Moving Time Window (Sokol 1988)

2.1 Conservative Synchronization

In conservative synchronization, violations of the local causality constraint are ruled out in advance by

executing an event only if it can be guaranteed that no events with smaller timestamp can be received.

Hence, the essence of conservative synchronization is to determine periods in virtual time for which the

arrival of events from other LPs can be ruled out. An LP may execute events in this period, referred to as

safe events. The basis for identifying such periods is the concept of lookahead, which is an LP’s capability

to determine the timestamps of future events. The availability of lookahead and the amount of virtual time

covered depend on the simulation model and may fluctuate over the course of a simulation. A conservative

synchronization algorithm orchestrates the computation of lookahead information, its dissemination among

the LPs, and the execution of safe events.

2.1.1 Extracting Lookahead

As conservative synchronization restricts LPs to executing only safe events, the effective parallelism and

thus the speedup over a sequential execution depends strongly on the lookahead. Quantitatively, lookahead

can be defined as follows: if at virtual time t, an LP can guarantee that the earliest event targeting a remote

LP has a timestamp of t+ l, then the LP’s lookahead is l. Importantly, this consideration includes any local

events that may be scheduled as a consequence of events received from other LPs. To extract sufficiently

large amounts of lookahead, model properties are assessed, with the required degree of sophistication

required depending on the model class. An example is given by the model of a packet-switched computer

network, where an LP may represent the network nodes within a certain geographical region and an event

typically represents a packet arrival. Here, a fundamental lower bound on the delay between the creation

of a packet at one LP and its arrival at another LP can be computed by making the conservative assumption

of speed-of-light propagation of network packets. Depending on the specific simulation model, additional

delays may be introduced depending on the sending node’s state such as its current load or protocol

state (Peschlow et al. 2009). By taking the node state into account, the amount of lookahead may be

increased at the cost of additional modeling effort and complexity. Further improvements may be achieved

by taking a graph-driven view of the possible interactions among the simulated entities (Lubachevsky 1989;

Meyer and Bagrodia 1999; Deelman et al. 2001). Following the possible paths and delays of future events,

the minimum timestamp of any future event that may affect another LP can be computed.

Stochastic model elements may decide on the creation of new events and their timestamps using a

pseudo-random number generator. In the absence of other model-specific bounds, predicting future event

timestamps requires presampling of the pseudo-random number stream (Loper and Fujimoto 2000), which

can be viewed as a partial execution of projected future events in advance solely for lookahead extraction.

Since sophisticated lookahead extraction procedures may involve substantial amounts of precomputation,

a suitable approach should be chosen in light of the achieved increase in parallel simulation performance.

2.1.2 Synchronous Algorithms

Synchronous algorithms proceed in a series of rounds within each of which the LPs execute events up to

a bound in virtual time before synchronizing at a global barrier. The time window covered within a round

is determined based on the LPs’ lookahead and may be the same across all LPs or determined for each

LP specifically. The Bounded Lag algorithm (Lubachevsky 1989) and YAWNS (yet another windowing

270

Authorized licensed use limited to: Universitaetsbibl Rostock. Downloaded on February 13,2023 at 15:07:44 UTC from IEEE Xplore.  Restrictions apply. 



Andelfinger and Cai

Algorithm 1: Synchronous conservative simulation using the YAWNS algorithm.

do
min ts ← compute global min timestamp()

foreach lpi in parallel do

curr eventi ← qi.peek() // consider earliest event in l pi’s event queue

while curr eventi.ts < min(min ts + lookahead, end time) do
execute curr eventi
qi.pop() // remove earliest event

curr eventi ← qi.peek()

send generated events

while min ts < end time

network simulator) (Nicol 1993) are quintessential representatives of this category of algorithms. A sketch

of the YAWNS algorithm assuming identical lookahead for all LPs is given as pseudo code in Algorithm 1.

2.1.3 Asynchronous Algorithms

In asynchronous algorithms, LPs alternate between event processing and idle periods individually. Rather

than communicating lookahead information at global synchronization points, asynchronous algorithms are

based on message passing via first-in-first-out (FIFO) queues among LP pairs.

We briefly sketch the Chandy-Misra-Bryant (CMB) algorithm (Bryant 1977; Chandy and Misra 1981),

arguably the most widely known asynchronous conservative algorithm. In the CMB algorithm, events sent

across a queue are assumed to follow timestamp order. Now, if all of an LP’s incoming FIFO queues

contain at least one message, the minimum timestamp of all messages in the queues is a lower bound on

the timestamp of any event received by a remote LP. This information is sufficient to safely execute events

up to the lower bound, but allows for cycles of LPs waiting for messages to occur, leading to deadlocks.

The CMB algorithm avoids deadlocks using so-called null messages through which LPs exchange

lookahead information as lower bounds on the timestamp of any future event sent to a given remote LP.

CMB variants differ in the policy according to which null messages are sent, either actively using some

local policy or only when requested by another LP (Su and Seitz 1988). Pseudo code for the basic execution

scheme of an LP using the CMB algorithm is given in Algorithm 2, based on Cai and Turner (1995).

The Time-of-Next-Event algorithm (Grošelj and Tropper 1991) aims to avoid the potential of CMB

for generating large numbers of null messages by an alternative approach to deadlock avoidance. In their

algorithm, LPs are unblocked through shortest path computations across sequences of empty FIFO queues

in order to determine lower bounds on events that may be sent across each empty queue.

Algorithm 2: Asynchronous conservative simulation using the CMB algorithm.

foreach l pi in parallel do
EITi ← ∞ // initialize earliest possible timestamp of an incoming event

do
extract messages with timestamps < EITi from input queues

EITi ← minimum timestamp in any input queue

EOTi ← min(EITi, curr eventi.ts) + lookahead // earliest possible timestamp of an outgoing event

execute extracted events, store generated events in event pool

send events from pool with timestamps < EOTi

send null message with timestamp EOTi on any output queue without new events

nowi ← min(EITi, EOTi)

while nowi < end time
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2.2 Optimistic Synchronization

In optimistic synchronization, temporary violations of the local causality constraint are permitted, but

subsequently detected and corrected using a rollback mechanism. Much of the difficulty of resolving

detected causality violations is caused by the potential for transitive errors, since an event that has been

executed in error may have created new events targeting other LPs, which must be canceled when the

original event is rolled back. Thus, optimistic synchronization algorithms must either rule out the potential

for transitive errors entirely or provide a mechanism to eliminate them as part of the rollback procedure.

To reduce the frequency of causality violations, the degree of optimism may be restricted statically or

dynamically (Reiher et al. 1989; Turner and Xu 1991; Palaniswamy and Wilsey 1994; Wang and Trropper

2007), enabling tradeoffs between parallelism and rollback costs.

2.2.1 Enabling Rollbacks

A rollback is required when a straggler event is encountered, i.e., an LP that is currently at virtual time

t1 receives an event with virtual time t0 < t1. To remedy this situation, the LP rolls back at least to t0,

after which regular event processing may resume starting with the newly received event. The previous LP

state may be restored either purely based on snapshots stored in memory, referred to as state saving, or

using reverse computation (Carothers et al. 1999). In the former case, each LP regularly creates a snapshot

of its local simulation state. A rollback then involves resetting the simulation state to the latest snapshot

prior to the timestamp of the received straggler event. State saving mechanisms differ in the frequency of

snapshot creation and may store snapshots either in full or as deltas over previous snapshots (Ronngren

et al. 1996). Rollbacks based on reverse computation employ reverse event handlers, which implement

the inverse of the event handlers called during regular event processing. By executing the reverse handlers

of all events executed at or after t0 in reversed order, the LP state prior to the straggler event’s timestamp

is restored. However, many mathematical and logical operations are not bijections and thus not uniquely

reversible without further information. Thus, in practice, forward event handlers are extended with facilities

for storing the disambiguation information required for a subsequent reversal (Ronngren et al. 1996; West

and Panesar 1996; Carothers et al. 1999).

2.2.2 Synchronous Algorithms

Given a mechanism for local rollbacks at an LP, the key differentiating characteristic among optimistic

synchronization algorithms is the mechanism used to prevent or correct transitive causality violations.

The synchronous algorithm Breathing Time Buckets (Steinman 1991) (cf. Alg. 3) prevents the occurrence

of transitive violations altogether. In each round, the LPs first execute local events up to an agreed-upon

Algorithm 3: Synchronous optimistic simulation using the Breathing Time Buckets algorithm.

do
min ts ← compute global min timestamp()

foreach l pi in parallel do

curr eventi ← qi.peek() // consider earliest event in l pi’s event queue

while curr eventi.ts < min(min ts + τ0, end time) do
execute curr eventi
qi.pop() // remove earliest event

curr eventi ← qi.peek()

tx ← global minimum timestamp of a newly generated event targeting a remote LP

foreach lpi in parallel do

roll back events with timestamps ≥ tx
send remaining newly generated events

while min ts < end time
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point in virtual time at which they enter a global barrier. Since the choice of the bound is not reliant on

lookahead, any of the executed events may later be invalidated by a straggler event. Newly generated

events targeting remote LPs are held at the generating LP. Once all LPs have reached the barrier, the

earliest timestamp tx of any event to be exchanged among LPs is determined using a global reduction.

Earlier events are guaranteed not to be invalidated later, whereas executed events with timestamps beyond

tx are rolled back. This algorithm guarantees that once an event e is received from a remote LP, the

event that generated e will never be rolled back, i.e., transitive errors are ruled out. The Breathing Time

Warp algorithm (Steinman 1993) combines the principles of Breathing Time Buckets with the treatment

of causality violations using a synchronous variant of the Time Warp algorithm described next.

2.2.3 Asynchronous Algorithms

Time Warp (Jefferson et al. 1987) (cf. Alg. 4) is an asynchronous algorithm that does not avoid transitive

errors but instead provides a mechanism for cascading rollbacks.

When an LP receives a straggler event, the LP rolls back previously executed events to restore its state

at a time prior to the straggler’s timestamp. If executed events past the straggler’s timestamp have generated

new events, they are eliminated by sending so-called antimesssages. Now, the LP resumes regular event

execution starting with the straggler event.

On reception of an antimessage, there are two cases. If the receiving LP has not processed the event

corresponding to the antimessage, the original event is discarded. If the LP has already processed the event,

the LP rolls back to a state prior to the timestamp of the antimessage.

In Time Warp, events, states, and antimessages remain in memory until it is guaranteed that their

timestamps cannot be reached by any upcoming rollback. In the absence of lookahead, this property is

satisfied for all events with timestamps less than the earliest unexecuted event in the simulation, the global

virtual time (GVT). The LPs periodically perform GVT computations (Samadi 1985; Mattern 1993) to

limit the memory consumption of the lists. Importantly, in distributed simulations, the GVT computation

must account for transient messages, i.e., events that have been sent but not yet received.

The Moving Time Window algorithm (Sokol 1988) operates asynchronously as does Time Warp, but

restricts the LPs’ progress earlier than GV T +w, with w being a tuning parameter whose optimal value

depends on the model. By tuning w, the aggressiveness of the optimistic execution can be varied to balance

opportunities for parallel execution with the frequency of rollbacks.

Algorithm 4: Asynchronous optimistic simulation using the Time Warp algorithm.

foreach lpi in parallel do
nowi ← −∞ // initialize l pi’s simulation time

foreach event from event list with nowi < event.ts < end time do
nowi ← event.ts

execute event, send generated events

foreach received message do

if message.is antimessage then

if corresponding event has been executed already then
roll back to state before message.ts, send antimessages

remove event from event list

else if message.is event then

if message.ts < nowi then
roll back to state before message.ts, send antimessages

insert event in event list
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3 APPLICATIONS

We illustrate the use of parallel and distributed methods on the example of transportation and spiking neural

networks, where problem scales beyond the capabilities of sequential simulations are routinely encountered.

3.1 Transportation

Road traffic simulations (Barceló 2010) are commonly used in the design, evaluation, and optimization

of transportation systems. We focus on microscopic models, in which vehicles and other entities such as

traffic signals are represented individually, enabling detailed simulations of heterogeneous behaviors and

interactions.

Microscopic traffic models typically consider traffic participants in the form of so-called driver-vehicle-

units (DVUs), which jointly model a driver’s intention and its realization through the vehicle. Given

an origin-destination pair and a route choice, a DVU’s short-term movement is usually defined by two

models. The longitudinal movement is defined by a car following model, which determines the DVU’s new

acceleration by the distance and velocity of the DVU in front. The lateral movement is defined by a lane

changing model, which considers the positions and velocities of nearby DVUs to determine whether a lane

change is carried out. Most car following models are formulated as ordinary differential equations with

respect to continuous time and space. Coupling among the equations is introduced by the leader-follower

relationships among the vehicles in a road network. Traffic simulators usually solve car-following models

by step-wise numerical integration with a fixed step size (Treiber and Kanagaraj 2015). Most lane changing

models, on the other hand, are inherently discontinuous in nature: when invoked, a lane change is triggered

and completed either instantaneously or not at all. Further discontinuous portions of microscopic traffic

models include the instantaneous changes of traffic light phases and special events such as road closures.

The detailed representation of individual traffic entities makes microscopic traffic simulations com-

putationally demanding. Simulation studies often restrict their scope to small numbers of junctions with

stochastically modeled inflows. Parallel and distributed simulation holds the promise of enabling the con-

sideration of scenarios spanning large urban areas at full detail. The literature has also proposed the use of

traffic simulation for real-time decision making (Pell et al. 2017). Based on dynamic data collected from

sensors, what-if simulations predict the effects of interventions such as changes to traffic light controls to

reduce congestion. To permit timely decisions, such simulations must proceed faster than wall-clock time.

At first appearance, microscopic traffic simulation seems to readily lend itself to parallelization. Firstly,

interactions are highly localized since DVUs react only to nearby entities, suggesting a simple partitioning

according to the topology of the road network. When representing the road network as a graph with

vertices representing junctions and weighted edges representing roads and their expected traffic load, graph

partitioning tools such as METIS (Karypis and Kumar 1997) are able to determine a partitioning with low

edge cut and low workload imbalance. However, it has been shown that to achieve high performance, it is far

more important to reduce the synchronization overhead by minimizing each LP’s number of neighbors (Xu,

Cai, Eckhoff, Nair, and Knoll 2017). In addition, traffic patterns can vary severely over the course of a

simulation. For instance, commuter traffic in the mornings and evenings may be reflected by high workload

in residential areas not observed throughout the day. Dynamic load balancing schemes have been proposed

to adapt to the changing traffic patterns based on vehicle counts per LP (Zhang et al. 2007; Sun et al.

2012) or using the LPs’ hardware utilization (Igbe 2010). Of course, the benefit of load balancing must be

weighed against the overhead induced by frequent migration of vehicles among LPs (Igbe 2010).

A second desirable property for parallel execution is given by the physical constraints on the DVUs’

velocities, which permit the computation of lower bounds on the time until a vehicle reaches an LP

boundary (Andelfinger et al. 2020), facilitating lookahead extraction. Unfortunately, if roads that cross LP

boundaries experience high traffic loads, the amount of available lookahead may be small, which tightly

couples the progress of adjacent LPs. Several approaches have been proposed to tackle this problem.

Firstly, additional lookahead can be introduced by computation replication (Xu, Viswanathan, and Cai
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LP1 LP2

(a) No replication

LP1 LP2LP1 LP2

(b) Replication at the LP boundary

Figure 1: Computation replication to reduce the frequency of synchronization.

2017). As shown in Figure 1, road network regions at LP boundaries are simulated by both neighboring

LPs, which delays the need for synchronization. Given an overlapping region covering n time steps, it

suffices to exchange state information among LPs every n steps to guarantee correctness of the results.

Secondly, the synchronization may be relaxed to produce approximate results at lower overhead. By locally

predicting the behavior of DVUs of remote LPs, the frequency of synchronizations can be reduced. Finally,

in discrete-event formulations of traffic simulation models, the need for lookahead can be avoided altogether

by employing optimistic synchronization algorithms (Yoginath and Perumalla 2009; Hanai et al. 2015).

3.2 Spiking Neural Networks

Spiking neural networks (SNNs) (Ghosh-Dastidar and Adeli 2009) are artificial neural networks that follow

a modeling approach closer to biological principles compared to the dense networks most commonly used

in machine learning. The defining characteristic of SNNs is the inter-neuron communication in the form

of action potentials referred to as spikes, which are modeled as instantaneous occurrences in continuous

time. Integration across the spikes observed at incoming synapses of a neuron determines the times at

which new spikes are generated. Apart from their uses in machine learning (Tavanaei et al. 2019), SNNs

serve a key role in studies aiming to simulate and understand the functioning of mammalian brains. Due to

the sparse nature of the spikes transmitted throughout SNNs and their suitability to be implemented using

neuromorphic hardware platforms, SNNs hold the promise to substantially reduce the energy costs of many

machine learning tasks (Nunes et al. 2022). Computationally, SNNs differ from other types of artificial

neural networks in the temporal sparsity of the inter-neuron communication along irregular topologies,

allowing their execution to be naturally described in terms of discrete-event simulation.

The parallel execution of SNN simulators such as NEURON (Hines and Carnevale 1997), NEST (Dies-

mann and Gewaltig 2001), and Brian (Goodman and Brette 2009) as well as GPU-based variants (e.g., (Fid-

jeland et al. 2009; Chou et al. 2018) typically follow the window-based conservative algorithm YAWNS

(cf. Section 2.1.2). Within a window, each LP handles the spikes received by a subset of all neurons.

Newly generated spikes are executed at the receiving neurons in subsequent windows. This approach is

exact if the window size is smaller than any synaptic delay, which is equivalent to a globally applicable

lookahead. These strictly synchronous approaches have been successful in achieving near-linear scaling in

benchmark problems (Migliore et al. 2006; Jordan et al. 2018). Recently, some work has considered the

optimistically synchronized simulation of SNNs (Plagge et al. 2018; Pimpini et al. 2022).

4 RESEARCH DIRECTIONS

The focus in parallel and distributed simulation reearch has moved from the acceleration of individual

simulation runs on homogeneous processors towards considerations of how the methods can benefit overall

simulation studies in modern hardware environments. Many further research directions have been outlined

in a recent roundtable report of the US Department of Energy (Perumalla et al. 2022).
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4.1 Avoiding Redundant Computations

Simulation studies often require many runs of the same or similar scenarios, either to achieve sufficient

statistical significance under stochasticity or to cover a range of parameters, e.g., for sensitivity analysis or

optimization. The focus is then on the computational and memory demands of an ensemble of simulation

runs. Since many parameters are often shared among the simulation runs, a significant portion of the

computations and states encountered in an ensemble study may be identical across multiple runs.

Figure 2 shows two time-driven agent-based pedestrian simulations. Each pedestrian pi moves towards

a goal gi in the simulation space and reacts to other pedestrians in direct vicinity as defined by a sensing

radius. Initially, the two parametrizations differ only in the doors available to reach the goal, which affects

the paths chosen of the agents. We see that at time t1, the path taken by p1 starts to diverge between the two

parametrizations. However, p1 has not entered another pedestrian’s sensing radius. At time t2, pedestrian

p1 enters p2’s sensing range in parametrization B, affecting p2’s trajectory. The subsequent behavior of

pedestrians p1 and p2 now differs between the two runs, whereas p3 still behaves the same.

Memoization is a generic approach used to avoid repeated identical computations by maintaining a

cache of previous computational results in memory (Michie 1968). If a specific code segment, e.g., a

function call, with the same input has been encountered before, the output can be retrieved from the cache.

By automatically applying memoization in the context of ensemble studies, repeated computations can be

avoided across simulation runs (Stoffers et al. 2018).

In updateable simulation (Ferenci et al. 2002), similarities among repeated simulations are exploited

by storing a timestamp-ordered list of events observed in an initial execution. Subsequent simulations

can then reexecute unchanged sequences of events in aggregate. While updateable simulation relies on a

user-specified function to determine which events can be reused, exact-differential simulation (Hanai et al.

2015) employs the rollback mechanism from optimistic synchronization to achieve transparency.

Simulation cloning (Hybinette and Fujimoto 1997; Hybinette and Fujimoto 2001) is an approach that

aims to eliminate redundant computations and reduce the memory consumption of ensemble studies by

sharing partial simulation states among multiple runs. Instead of caching previous results, simulation cloning

aims to avoid revisiting identical computations at the chosen granularity altogether. This is achieved by

computing simulation states that are identical across multiple runs only once. All runs within the ensemble

proceed concurrently, creating copies of partial states only when a unique trajectory is entered.
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(a) Parametrization A. Agents p1 and p2 never enter each other’s sensing radius.
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(b) Parametrization B. Agent p1 enters agent p2’s sensing radius at time t2.

Figure 2: Two parametrizations of a pedestrian simulation.
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{p1, p2, p3}

{p1,A, p2, p3}

{p1,B}

{p1,A, p2,A, p3}

{p1,B, p2,B}

{p1,A, p2,A, p3}

{p1,B, p2,B}

t0 t1 t2 t3

Figure 3: Cloning tree corresponding to the simulations shown in Figure 2.

At the heart of simulation cloning is the concept of the cloning tree, which represents the mapping of

simulated entities to sets of simulation runs. Figure 3 shows the evolution of the cloning tree over the course

of the two pedestrian simulations from our example. Initially, all pedestrians are in the same positions in

both parametrizations. Thus, only one copy of their states exists. Since p2 and p3 are unaffected by the

absence of the top door in parametrization B, their state updates from t0 to t1 are computed only once.

In contrast, p1 is cloned, resulting in two versions of its state, representing the paths taken in the two

parametrizations. For the two versions, denoted as p1,A and p1,B, separate updates are now computed at

each step. At time t2, pedestrian p1,B has entered p2’s sensing range, whereas p1,A has not. The influence

of p1,B on p2 in parametrization B requires p2 to be cloned, creating the two versions p2,A and p2,B. Since

p3 never interacts with the other pedestrians, only one copy exists throughout the simulation.

The benefit of cloning in this simple example can be quantified by counting the number of unique

states. Including the initial states, a total of 24 states are visited without cloning. Simulation cloning

considers only unique states, resulting in a total of only 17 pedestrian states.

Simulation cloning has been explored at several levels of granularity from the generic logical process

level of the original proposals (Hybinette and Fujimoto 1997; Hybinette and Fujimoto 2001), to the

level of individual agents in agent-based simulations (Li et al. 2017), to cells in grid-based simulation

spaces (Yoginath and Perumalla 2018), to individual state variables (Pecher et al. 2018).

4.2 Exploiting Heterogeneous Hardware Platforms

In the past decades, general-purpose computing hardware has diversified into heterogeneous platforms in

which multi-core CPUs are augmented by accelerators such as graphics processing units (GPUs), CPU-based

manycore devices, and field-programmable gate arrays (FPGAs), creating a need to reconsider simulation

algorithms and data structures. Hardware acceleration of discrete simulations can take several forms. One

approach is to execute only specific model portions on an accelerator, whereas the simulator core remains

on a CPU. For instance, in a network simulation, detailed models of wireless signal transmissions may be

offloaded to a GPU (Bai and Nicol 2010; Andelfinger et al. 2011). This approach limits the porting efforts,

but requires frequent data transfers between a host CPU and an accelerator. In contrast, executing the

entirety of a simulation on an accelerator requires an implementation of the core simulator functionalities

tailored to the target hardware. In both cases, the use of parallel computing resources can be increased by

executing multiple simulation runs in parallel (Kunz et al. 2012; Komarov and D’Souza 2012).

Among today’s accelerators, GPUs are the most widely used for discrete simulations (Xiao et al. 2019).

Compared to CPU architectures, modern GPU architectures dedicate a larger proportion of transistors to

data processing rather than caching and flow control (NVIDIA Corporation 2022). The unit of execution

on a GPU is a group of 32 or 64 threads operating in lockstep. During execution of a GPU program, a

hardware scheduler dynamically assigns thread groups to the available resources in order to hide memory

access latencies. Control flow branches taken only by some of the threads in a group are serialized, resulting

in reduced performance. In addition, the performance of GPU is heavily dependent on the memory access

patterns. If memory accesses by consecutive threads target consecutive memory locations, groups memory

accesses are coalesced, i.e., served in aggregate in a single memory transaction. Hence, GPUs perform

particularly well for workloads with high degrees of regularity in the control flow and memory accesses.
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The difficulty when transforming a simulation into a largely regular workload suitable for efficient

GPU-based execution depends on the considered modeling paradigm. Let us first consider time-driven

simulations as frequently used to execute agent-based models. In the simplest case, each time step of such

a simulation involves updating the state of each agent present in the simulation. As the updates are dense

in time, a simple one-to-one mapping of GPU threads to agents is possible. On the other hand, both the

control flow and the memory accesses within the agent updates may vary. By assigning agents to threads

according to their states, the probability of divergence in the control flow is reduced (Kunz et al. 2012).

The memory accesses during agent updates may also be highly irregular. For instance, an agent may

interact with others within a certain radius. If the neighbors’ variables are scattered in memory, opportunities

for coalescing are rare. Suitable data layouts can increase these opportunities (Pham et al. 2018).

In event-driven simulations, state updates occur only at specific points in time, allowing events to be

sparsely distributed both in time and across the simulated entities. The main challenge in GPU-based

execution thus lies in efficiently identifying sufficient numbers of independent events to exploit the GPU’s

massively parallel hardware resources. The GPU’s underlying single-instruction multiple-data processing

approach suggests the use of synchronous parallel simulation algorithms. In Park and Fishwick (2010),

synchronization follows the conservative window-based procedure of the YAWNS algorithm (cf. Sec-

tion 2.1.2). In discrete-event simulators, priority queues are employed to iteratively select and execute the

earliest pending event. In CPU-based simulators, efficient implementations typically rely on pointer-based

data structures, e.g., calendar queues (Brown 1988). On GPUs, however, the mapping between simulated

entities and threads is fine-grained, leading to much smaller numbers of pending events handled by a GPU

thread. In combination with the substantial cost of dynamic memory allocations and cache misses, this

suggests the use of dense array-based priority queue implementations (Baudis et al. 2017). The probability

for a thread to remain idle can be reduced by assigning multiple entities to the same thread, as in the generic

approach of thread coarsening (Zoppetti et al. 2000; Magni et al. 2013). However, the cost of operations

required to insert new events and/or extract the earliest event increases with the number of events in the

queue. By dynamically aggregating and deaggregating queues based on runtime measurements, parallelism

and overhead can be balanced (Andelfinger and Hartenstein 2014; Liu and Andelfinger 2017).

Many-core CPUs such as Intel’s Xeon Phi combine dozens of general-purpose cores on a chip. As

commodity multi-core CPUs are now reaching similar core counts, parallel simulation algorithms must

be able to efficiently support large numbers of parallel LPs in shared memory. Targeting Intel Xeon

Phi using the Time Warp algorithm, the literature has identified the execution of communication and

synchronization tasks on separate threads and efficient means of interaction between the threads as key

considerations (Williams et al. 2021).

Making full use of the capabilities of accelerators often requires detailed knowledge of the target hardware.

To alleviate the need for time-intensive development and debugging, several domain-specific simulation

frameworks automatically translate model specifications to accelerator code. These frameworks provide

optimized implementations of common simulator functionalities, whereas the model code is generated from

a representation in a domain-specific language (Cosenza et al. 2021; Chou et al. 2018).

Since CPUs and different accelerators vary in their performance on a given type of computation, new

challenges arise when aiming to optimally use the available devices in combination. In purely CPU-based

parallel and distributed simulations, low synchronization overhead and an evenly balanced workload is

often achieved by domain decomposition, i.e., by dividing the simulation space along the geographical

or logical topology defined by the model. In a heterogeneous hardware environment, however, different

models may vary severely in their execution times on different devices. Hence, it may be more efficient to

choose a functional decomposition across different models used throughout the simulation, either statically

or based on runtime measurements and performance models (Bai and Nicol 2010; Xiao et al. 2020).
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5 CONCLUSION

We provided an overview of established methods and research directions in methods for high-performance

discrete simulations to meet the computational demands of large-scale and detailed simulation studies.

Algorithms for parallel and distributed simulation to accelerate and scale up the execution of individual

simulation runs are well-studied, with recent refinements focusing on specific application domains or

emerging hardware platforms. Current research aims at the fruitful use of parallel simulation techniques in

overall simulation studies to avoid redundant computations and to exploit heterogeneous hardware platforms.

Efforts towards making the parallelization of models largely transparent to the developer operate

between the two poles of maximizing performance by specialization to model properties on one hand, and

generalization on the other hand. A balance is provided by domain-specific frameworks offering optimized

parallel simulation facilities tailored to common properties shared by entire classes of models.
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