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Towards Differentiable Agent-Based Simulation

PHILIPP ANDELFINGER, University of Rostock, Germany

Simulation-based optimization using agent-based models is typically carried out under the assumption that

the gradient describing the sensitivity of the simulation output to the input cannot be evaluated directly. To

still apply gradient-based optimization methods, which efficiently steer the optimization towards a local op-

timum, gradient estimation methods can be employed. However, many simulation runs are needed to obtain

accurate estimates if the input dimension is large. Automatic differentiation (AD) is a family of techniques to

compute gradients of general programs directly. Here, we explore the use of AD in the context of time-driven

agent-based simulations. By substituting common discrete model elements such as conditional branching

with smooth approximations, we obtain gradient information across discontinuities in the model logic. On

the examples of a synthetic grid-based model, an epidemics model, and a microscopic traffic model, we study

the fidelity and overhead of the differentiable simulations as well as the convergence speed and solution qual-

ity achieved by gradient-based optimization compared with gradient-free methods. In traffic signal timing

optimization problems with high input dimension, the gradient-based methods exhibit substantially superior

performance. A further increase in optimization progress is achieved by combining gradient-free and gradient-

based methods. We demonstrate that the approach enables gradient-based training of neural network-

controlled simulation entities embedded in the model logic. Finally, we show that the performance overhead of

differentiable agent-based simulations can be reduced substantially by exploiting sparsity in the model logic.
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→ Continuous optimization; Multi-agent reinforcement learning; • Computing methodologies→
Modeling methodologies; Agent/discrete models;
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1 INTRODUCTION

Simulation-based optimization comprises methods to determine a simulation input parameter com-
bination that minimizes or maximizes an output statistic [16, 43, 64]. It has applications in a vast
array of domains, such as supply chain management [47], transportation [62], crowd modeling [83],
and health care [81]. The problem can be viewed as a special case of mathematical optimization
in which an evaluation of the objective function is reflected by the execution of one or more sim-
ulation runs. Many mathematical optimization methods evaluate not only the objective function
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itself but also its partial derivatives to inform the choice of the next candidate solution. Given
a suitable initial guess, gradient-based methods efficiently steer the optimization towards a local
optimum [68].

In contrast, simulation-based optimization using agent-based models usually relies either on
surrogate models [6, 11], which typically abandon the individual-based level of detail of the orig-
inal simulation model [5], or on gradient-free methods such as genetic algorithms [15]. While
gradient-free simulation-based optimization is a time-tested approach, the hypothesis underlying
this article is that the targeted local search carried out by gradient-based methods may achieve
faster convergence or higher-quality solutions for certain agent-based models. An existing method
to obtain gradients targeted towards discrete-event simulations is Infinitesimal Perturbation Anal-
ysis (IPA) [40], which the literature applies by determining derivative expressions by a manual
model analysis (e.g., [19, 31, 44]), limiting its applicability to relatively simple models. Alterna-
tively, gradients can be estimated based on finite differences. However, in the classical finite differ-
ences approaches, the number of required simulation runs grows linearly with the input dimension.
Approaches to tackling the computational costs for computing gradients include methods for di-
mensionality reduction as used in general sensitivity analysis of agent-based simulations [25, 29]
and the parallel execution of ensembles of simulation runs on supercomputing clusters.

In the field of deep learning, the ability to optimize neural networks with millions of parame-
ters within tolerable time frames rests on gradient information determined using the backpropa-
gation algorithm [69]. Backpropagation is a special case of automatic differentiation, a family of
methods to compute derivatives of computer programs written in general-purpose programming
languages [58]. In this article, we explore the use of automatic differentiation for gradient-based
optimization of agent-based simulations. The main obstacle to this goal is given by discontinuous
model elements, which are considered to be among the constituent features of agent-based mod-
els [13]. To enable differentiation across such elements, we propose substitutes constructed from
known smooth approximations of basic operations. In contrast to classical surrogate modeling ap-
proaches, our approach retains the per-agent logic of the original model. The resulting agent-based
models are differentiable regarding some or all model aspects, depending on the degree to which
discontinuous elements are substituted. Figure 1 contrasts the existing methods with our proposed
approach, which we refer to as differentiable agent-based simulation.

As our focus is on exploring the merits of this novel approach, we present extensive empirical
results based on differentiable implementations of a synthetic cellular model as well as models
from the transportation and epidemics domains. We study (1) the fidelity of the results as com-
pared with purely discrete reference models, (2) the fidelity of the gradients in the presence of
stochasticity as compared with gradients computed using finite differences, (3) the overhead intro-
duced by relying on smooth model building blocks, and (4) the relative convergence behavior and
solution quality in simulation-based optimization problems as compared with gradient-free meth-
ods. To further showcase the potential of the approach, we extend the traffic simulation model by
embedding neural network-controlled traffic signals in the differentiable model logic. This enables
their training based on gradients reflecting the interactions among the static and neural model el-
ements and serves as an example towards a unification of manually constructed representations
of domain knowledge in the form of agent-based models and purely data-driven models based on
neural networks.

The novel contributions in this extended version of our conference paper [2] include the addi-
tion of a synthetic model to assess the fidelity of the output of differentiable simulations and the
computed gradients, the combination of gradient-based and gradient-free optimization methods,
and the exploitation of sparsity in the agent logic to reduce memory consumption and execution
times. Further, the discussion of related work has been extended and updated.
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Towards Differentiable Agent-Based Simulation 27:3

Fig. 1. Overview of existing simulation-based optimization methods (a) to (c) and our proposed approach

(d). f : simulation, θ : simulation parameters, ei : unit vector, h: step size for finite differences.

2 AUTOMATIC DIFFERENTIATION

Automatic Differentiation (AD) comprises techniques to computationally determine gradients of
computer programs [35, 58]. In contrast with finite differences, AD determines exact partial deriva-
tives for an arbitrary number of either input or output variables from a single program execution.
In comparison to symbolic differentiation as implemented in computer algebra systems, AD avoids
representing the frequently long derivative expressions explicitly [7].

AD computes derivatives based on the chain rule from differential calculus. In the forward mode,
intermediate results of differentiating the computational operations with regard to one of the in-
puts are carried along during the program’s execution. At termination, the partial derivatives of
all output variables with regard to one input variable have been computed. Thus, given n input
variables, n passes are required. Conversely, reverse-mode AD computes the derivatives of one out-
put variable with regard to arbitrarily many inputs in a single pass. During the execution of the
program, the computational operations and intermediate results are recorded in a graph. At termi-
nation, the graph is traversed in reverse, starting from the output. The chain rule is applied at each
operation to update the intermediate derivative calculation. When arriving at an input variable,
the computed value is the partial derivative of the simulation output with regard to the respec-
tive input. Given our use case of simulation-based optimization, for which we expect the input
dimension to be larger than the output dimension, the remainder of the article will rely on reverse-
mode AD.

Mature implementations of AD are available for programming languages such as C and C++ [34,
42], Java [73], and Julia [46]. Modern AD tools rely on expression templates [42] or source-to-
source transformation [46] to generate efficient differentiation code.

3 DIFFERENTIABLE AGENT-BASED SIMULATION

From a computational perspective, a simulation model implementation applies a sequence of log-
ical and arithmetic operations to the input variables to produce a set of output variables. Our
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Fig. 2. A conditional branch (a) can be represented by the Heaviside function (b) with derivative 0 in any

point � 0. The logistic function 1/(1 + e−k (x−x0 ) ) is a well-known smooth approximation that allows the

derivatives to capture the effects of taking an alternative branch.

goal is to extract derivatives from model executions that can guide gradient-based optimization
methods, which requires the operations to be differentiable and to yield finite and non-zero deriva-
tives. However, typical agent-based models must be expected to contain discontinuous elements:
viewed as functions on the reals, model elements such as conditional branching and discrete state
transitions may be non-differentiable in certain points or regions of their domain and may carry
unhelpful zero-valued derivatives in others. The approach of differentiable agent-based simulation
involves the construction of model implementations from differentiable building blocks that act as
substitutes for non-differentiable model elements.

Differentiable agent-based simulation shares its approximative nature with methods for meta-
modeling [6, 11]. However, this family of approaches typically generates representations of the
model behavior on an aggregate level, for example, by regression over samples of the input-output
relationship defined by the model. In contrast, the bottom-up approach of differentiable agent-
based simulation aims to retain the per-agent logic of an discontinuous reference model. Once
a differentiable counterpart to a reference model has been constructed, individual agents’ state
trajectories can be compared directly between the two model variants.

As a basic example, consider the C code fragment of Figure 2(a) containing a conditional state-
ment. For x0 = 0, the function behaves like the Heaviside step function (Figure 2(b)), the derivative
of which is zero-valued at x � 0, and infinite at x = 0. A well-known smooth approximation [56]

is given by the logistic function: lk (x ) = (1+e−k (x−x0 ) )−1, where k determines the steepness of the
curve and x0 shifts the curve along the x axis. In Figure 2(b), we also show the logistic function
with x0 = 0, varying k . When increasing k , the logistic function becomes an increasingly closer
approximation of the Heaviside step function. Thus, to make our example C function amenable to
automatic differentiation, we can simply substitute its body by return logistic(x, x0);.

By varying x0, we can now approximate expressions of the form x ≥ x0. We refer to this
basic building block as smooth threshold. In the remainder of this section, we describe a num-
ber of slightly more complex building blocks for agent-based simulations. This bottom-up ap-
proach is similar in spirit to the construction of reversible programs [65, 77], which has also
found applications in the simulation realm (e.g., [3, 80]). We emphasize that the building blocks
described in the following rely on well-known continuous approximations and that the list is far
from complete. Our intention is to gather a basic list of constructs as a starting point for model
development.

3.1 Conditional Execution and Branching

Arithmetic operations carried out conditionally depending on program input pose further chal-
lenges for automatic differentiation. Consider the code fragment if (x >= x0) y = c; else y = d;

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 4, Article 27. Publication date: November 2022.
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where x is the input, x0, c, and d are constants, and y is the output. During each execution, the

control flow covers exactly one of the branches. Thus, y is always assigned a constant, and dy
dx ,

that is, the sensitivity of y to changes in x, evaluates to 0. By expressing the control flow using a
smooth approximation (e.g., as shown in [39]), we can extract a derivative across both branches:
double z = logistic(x, x0); y = z * c + (1 - z) * d;. We refer to this simple pattern as
smooth branching.

3.2 Iteration

The core of a typical time-driven agent-based simulation is a nested loop composed of an outer loop
that iterates across the timesteps and an inner loop that iterates across the agents. Assuming that
the number of timesteps and agents are both constants, the loop represents static — that is, input-
independent — control flow, which requires no further preparation for automatic differentiation.

Input-dependent loop conditions can be transformed into branches if an upper bound for
the number of iterations is known. For example, variations in the number of agents can be
implemented by masking within each loop iteration the behavior of inactive agents using smooth
threshold.

3.3 Selection of Interaction Partners

The selection of interaction partners based on their attributes is one of the fundamental primi-
tives in agent-based simulations. A straightforward differentiable representation iterates across
all agents, masking interactions with those for which a certain condition does not hold. An ex-
ample is given by the traffic simulation model of Section 4: each vehicle chooses its acceleration
based on attributes of the closest vehicle ahead. The selection of the minimum distance can be
achieved by iteratively applying a smooth approximation of the minimum function: loд

∑
i e

xi [21].
Once the distance to the closest vehicle has been determined, additional attributes are required
to carry out the interaction. To support the retrieval of additional attributes, we construct a se-
lect by attribute building block, which selects an agent’s specified “target” attribute based on the
known value of a “reference” attribute. This is achieved by iterating across all agents’ reference
attributes, adding the target attribute if the reference attribute is sufficiently close to the known
value.

A downside of this approach is its overhead, as each agent traverses all other agents. In Sec-
tions 4 and 5, we present opportunities for performance improvements and evaluate the overhead
of different model variants.

3.4 Time-Dependent Behavior

Agents may dynamically alter their behavior throughout the simulation. If the relation between
time and behavior is not input dependent, it can be viewed as a static part of the model logic and
does not require further consideration with respect to differentiability. An example are actions
triggered every n timesteps.

Input-dependent periodic behavior can be expressed using the smooth periodic step function
lk (sin( π t

p
)), where t is the current time and p is the period. The action itself is then triggered

through smooth branching, employing the smoothed periodic step function to mask the action if it
is currently inactive.

Timed actions can be scheduled using smooth timers: a timer variable vt is initialized to the
desired delta in time and decremented at each timestep, where lk (−vt ) serves as a condition for
smooth branching. When the action associated with the timer shall not occur, vt is set to a delta
beyond the simulation end time.
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3.5 Stochasticity

Stochastic elements in agent-based models represent uncertainty on the original system’s behavior
either due to insufficient knowledge (epistemic uncertainty) or due to the fundamental stochastic
nature of certain system behaviors (aleatoric uncertainty) [26]. Here, we consider the case in which
a stochastic model has already been constructed, that is, the uncertainty in the output of simulation
runs is inherent to the model and, thus, aleatoric in nature.

In model implementations, the stochastic elements are typically represented by pseudo-random
number (PRN) generators. For the purpose of differentiation, PRNs drawn based on a given seed
throughout a simulation run can be regarded as constants, even if the numbers are drawn at run-
time. For instance, in a discrete model, a Bernoulli trial with success probability p based on a PRN
r takes the following form: bool success = r < p;. Using smooth branching, this is represented
as double success = logistic(p, r);.

To estimate the gradient of a stochastic model at a given parameter combination, the gradients
obtained from runs with different seeds can be aggregated. While simple averaging can yield biased
gradient estimates, recent results by Eckman and Henderson indicate that such estimates still steer
the optimization near local optima [28].

Importantly, even if PRNs are treated as constants, the effects of subsequent operations on PRNs
are still captured by the computed gradients. An example is inverse transform sampling, which
transforms uniformly distributed PRNs to a target distribution. In the epidemics model of Sec-
tion 4, the rate of the target exponential distribution is affected by the simulation input. Here, the
sensitivity of the exponential variate to changes in the input is captured by the gradient. A more
sophisticated treatment of stochasticity by operating directly on distributions [18] is part of our
future work.

4 MODEL IMPLEMENTATION

We prepared five models for automatic differentiation. First, we consider an abstract cellular model
in which the cells’ states are propagated stochastically across a grid. The second model is an agent-
based formulation of the classical susceptible-infected-recovered model extended by movement on
a graph. The remaining three models represent road traffic controlled by traffic lights. One model
variant allows gradient information to propagate through all model elements but is limited in its
scalability. By restricting differentiability to aspects relevant to our use case of simulation-based
optimization, two further variants are able to scale to road networks populated by thousands of
vehicles.

It is important to note that the benefits of our approach must be expected to depend strongly on
the smoothness of the function defined by the simulation model. If the relationship between the
simulation inputs and output in the original discrete formulation is non-smooth, gradient-based
optimization approaches are likely to become caught on plateaus or low-quality local optima of
the simulation output function. The selection of models described in the following aims to cover
reference models of varying degrees of smoothness. In the discrete reference models of the cellular
and epidemics model, agent states are Boolean or integer values that evolve throughout a sequence
of Bernoulli trials, leading to discontinuous jumps in the simulation output. The microscopic traffic
model combines a timestepped formulation of a car-following model with traffic lights alternating
discretely between the “red” and “green” states. Here, when altering the traffic light phases as
offsets in simulated time, jumps in the simulation response may be observed when a change in a
traffic light’s offset allows a vehicle to pass the light rather than having to brake sharply or vice
versa. By the use of the differentiable building blocks, such jumps are smoothed out, allowing us to
compute non-zero partial derivatives in a given point of the input space. Nevertheless, depending
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on the chosen simulation output function and the degree of smoothing, the remaining “rugged”
structure of the simulation response surface may still lead a gradient-based optimization to become
caught in low-quality local optima.

4.1 State Propagation on a Cellular Grid

In order to the study the fidelity of the simulation results and gradients computed from a dif-
ferentiable agent-based simulation, we implemented a synthetic model of state propagation on a
grid. Similar to cellular agent-based models in biology [1], medicine [66], and epidemiology [71],
Boolean agent states are propagated stochastically throughout a cellular grid. In such models, an
agent’s state may represent its infection status or its exposure to a piece of information. At each
timestep, Bernoulli trials are conducted at each agent whose state is true to determine the neighbors
to which the state is propagated. The success probability of a trial is a model parameter specific to
the receiving agent, that is, the total number of model parameters is equal to the number of cells
in the grid.

The differentiable model formulation represents the Boolean agent states as real numbers on
[0, 1]. The Bernoulli trials take the form described in Section 3.5. Smooth branching serves to select
cells that propagate their states, that is, cells with states close to or equal to 1. As smooth branching
traverses both possible control flow paths, this implies that at each timestep, Bernoulli trials are
carried out for the neighbors of all cells, even if their state is close to or equal to 0.

4.2 Epidemics Model on a Graph

This model follows Macal’s agent-based formulation [57] of the well-known Susceptible-Infected-
Recovered model [49], which imitates the spread of an infection. We extend Macal’s model by
random movement on a social graph. The model serves to illustrate the viability of automatic dif-
ferentiation for simulation-based optimization given purely discrete agent states and under strong
dependence on stochastic model elements.

An arbitrary number of agents is situated on each node of a static graph. Initially, each agent is
either in the “susceptible” or “infected” state, the probability being a model input. At each timestep,
each agenta acts as follows: ifa is susceptible, each infected agenta′ � a at the current node infects
a with a per-location probability given as an input. If a is newly infected, the delay to the transition
to the “recovered” state is drawn from an exponential distribution, the rate being another input.
Finally, the agent moves to a neighboring graph node chosen uniformly at random.

For a given seed value, the agents change their locations according to predetermined trajec-
tories. Hence, the overhead of differentiable neighbor search can be avoided by gathering each
agent’s neighbors from an array updated at each timestep. The key remaining model aspects are
constructed from differentiable building blocks. Infections are handled by supplying uniformly dis-
tributed random variates and the infection probabilities as input to smooth branching. Recovery
is an instance of the smooth timer building block. Using as input a uniform random variate and
the simulation input specifying the recovery rate, we determine the concrete delay until the agent
recovers using inverse transform sampling. As the gradient information propagates through the
uniform-to-exponential transformation, the computed gradients capture the sensitivity of the sim-
ulation output to the configured recovery rate. At each timestep, the smooth branching building
block is applied to carry out the transition to the “recovered” state once the recovery delay has
expired.

4.3 Microscopic Traffic Simulation

The traffic simulations employ model classes encountered in common academic and commercial
traffic simulators, such as SUMO [8] and VISSIM [30]. The agents’ longitudinal movement is
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governed by the Intelligent Driver Model (IDM) [78]. The IDM defines a vehicle’s acceleration
by an ordinary differential equation, which relates the acceleration of the current vehicle to its
own velocity and its distance and velocity to the vehicle in front. In time-driven microscopic traf-
fic simulations, each vehicle determines its acceleration in the next timestep from t to t + τ based
on the vehicle states at t . From the acceleration, the new velocity and position are determined
using a suitable integration scheme [4].

For lane changing, we rely on a simplified model similar to MOBIL [50]: every n timesteps, the
vehicles determine the projected increase in clearance observed after a hypothetical lane change
to the left or right lane, if any. If the clearance increase is beyond a configurable threshold, an
instantaneous lane change is carried out.

The traffic is controlled by traffic lights with static or dynamic timing as described later. Overall,
we obtain hybrid models composed of an originally continuous car-following behavior, which is
discretized through numerical integration and the purely discrete transitions in the lane-changing
behavior and traffic light control.

4.3.1 Single Multi-Lane Road. The purpose of this initial road traffic model is to explore the vi-
ability of implementing a fully differentiable model, that is, one in which the computed gradients
capture the behavior of all model elements, and to study the computed gradients when varying
the input parameters. While we hope for the model description to be instructive, we will see that,
for practical applications, it is preferable to limit the incurred overhead by restricting the differen-
tiability to selected model elements.

We first consider the car-following model IDM. In a time-driven formulation, it directly relates
the new acceleration of a vehicle to its leader’s current state, making automatic differentiation
of the acceleration update itself straightforward. A challenge lies in determining the leader: in a
typical implementation, the vehicles located on a lane are stored in a sorted fashion, rendering
the leader selection trivial. In the differentiable variant, we instead determine a vehicle’s leader
by iterating across all vehicles and selecting the vehicle with the minimum positive position delta.
Since we require both the position and velocity of the leader, we arrive at a two-step process.
First, we determine the leader’s position by repeatedly applying smooth minimum as described
in Section 3.3, masking negative position deltas using smooth threshold. Then, select by attribute
determines the leader’s velocity based on its position and lane.

Lane-changing decisions are made periodically by determining the lane with the largest forward
clearance using smooth maximum, after which smooth threshold is applied to determine whether
the clearance justifies a lane change.

A traffic light is positioned on the road, alternating between green and red phases of equal
duration using periodic step function. The vehicles brake at red lights according to the IDM. This is
achieved using smooth branching on three conditions: the light is red, the light is still ahead, and
the light is closer than the leading vehicle, if any.

In contrast to this fully differentiable model, the variants described next follow a more pragmatic
approach that restricts the differentiability to specific model aspects.

4.3.2 Grid Network with Static Signal Timings. In this model variant, the vehicles traverse a grid-
shaped network of multi-lane roads connected at the boundaries to form a torus. At each intersec-
tion, traffic lights are placed at the incoming roads. The timings of the light phases at the intersec-
tions are given as offsets in simulation time, which form the simulation input. When encountering
an intersection, the vehicles turn left or right or advance to the road ahead based on configurable
probabilities. While the vehicles’ behavior with regard to their acceleration, lane changing, and
the traffic lights is identical to the previous model variant, the implementation follows a different
approach. Since our objective is to maximize the overall vehicle progress by adjusting the traffic
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Fig. 3. Neural network-controlled traffic lights embedded in a traffic simulation. As the neural network is

part of the differentiable model logic, training can rely on the partial derivatives with regard to the network

coefficients returned by the simulation.

light timings, the key model elements for which we aim to extract gradient information are the
light control and the longitudinal movement of the vehicles. Thus, the identification of a vehicle’s
leader, lane changing, and the advancement to adjacent roads follows their natural implementa-
tions based on storing and updating the vehicle states in per-lane arrays sorted by position. Hence,
they are not captured in the computed gradients. As an example, suppose that a slight change in
the simulation input would cause a new lane change, which, in turn, would affect the simulation
output. As the model does not offer differentiability across lane changes, the gradient would not
reflect this possibility.

Aside from the performance benefits of this approach (see Section 5), its lowered implementation
effort suggests that integrating automatic differentiation capabilities in an existing traffic simulator
could be possible without excessive development efforts.

In Section 5.3.2, this model variant serves as an example for simulation-based optimization. One
input parameter per intersection represents the light phase offset and will be adjusted to maximize
the vehicles’ progress. To limit the input dimension, existing work considers only small numbers
of intersections (e.g., [24]) or reduces the model detail from an individual-based view as used in
our work to the mesoscopic or macroscopic level (e.g., [82]).

4.3.3 Grid Network with Neural Network-Controlled Signals. In this model variant, we substitute
the traffic light control based on time offsets with a dynamic control using a neural network. The
setup is illustrated in Figure 3: the neural network is invoked periodically as part of the model
logic. At each decision point, the current positions of all vehicles in the simulation are provided
as input to the neural network, its output being the new traffic light phases (red or green) for the
horizontal roads at each intersection, the vertical roads being assigned the opposite phase. Since
the neural network is implemented as part of the model logic, the gradients extracted through
automatic differentiation directly reflect the sensitivity of the vehicles’ movement to the neural
network’s coefficients, enabling gradient-based training in order to optimize the traffic flow. This
is in contrast to reinforcement learning approaches, which typically operate under the assumption
that the system model is non-differentiable and that the effect of the trained entity’s actions must
be explored purely by observing the resulting states and “rewards” throughout repeated simulation
runs [48]. In our case, each simulation run returns not only an overall reward in the form of the
vehicles’ progress, but also derivatives that guide the optimization towards a locally optimal traffic
light response.

The neural network follows a fully connected feed-forward architecture: there are 5 input neu-
rons for each lane in the road network, the input being the sorted positions of the 5 vehicles closest
to the intersection. There is a single hidden layer composed of h neurons. The output layer is com-
posed of one neuron per intersection, yielding the new traffic light states. Given i intersections, 4
incoming roads per intersection, and 3 lanes per road, the architecture results in (60i+1)h+ (h+1)i
coefficients to be adjusted. All neurons employ the hyperbolic tangent function for activation. The
traffic light states returned by the neural network are floating point numbers translated to green
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or red phases using smooth threshold, a positive value representing a green light on a horizontal
road.

5 EXPERIMENTS

Our experiments are intended to answer the overarching research question: “Can gradient-based
simulation-based optimization using the presented differentiable models outperform gradient-free
methods?”

To achieve a benefit during optimization, the fidelity of the differentiable model must be suf-
ficient so that the quality of identified solutions carries over to the non-differentiable reference
model. Further, the execution time overhead of the simulation must be small enough not to out-
weigh potential improvements in convergence speed. Thus, in the remainder of this section, we
evaluate the fidelity and overhead of the differentiable model variants. The overall benefit of
gradient-based over gradient-free optimization is evaluated in a number of simulation-based op-
timization experiments. In these experiments, we compare our approach to a number of methods
for simulation-based optimization that can operate on the original discrete implementations of our
models, avoiding the overheads of the differentiable variants. We also study the benefits of com-
bining gradient-based and gradient-free optimization methods. Finally, we conduct experiments
in which sparsity in the agent actions is exploited to reduce the execution times and memory
consumption of the differentiable simulations.

The following gradient-free optimization methods are employed: Differential Evolution
(DE) [75], Conventional Neural Evolution (CNE) [61], and Simulated Annealing (SA) [54]. As a
representative of methods based on finite differences, we also show results using Stochastic Per-
turbation Stochastic Approximation (SPSA) [74], which has previously been studied in the context
of simulation-based optimization [10]. The optimization using differentiable simulation relies on
the following gradient-based methods: Stochastic Gradient Descent (SGD), Adaptive Moment Es-
timation (Adam) [52], and Nadam [27].

In all of the optimization methods, an evaluation at a parameter combination executes a fixed
number of simulation runs specified below for each model. The return value is the average across
the simulation runs’ outputs. An evaluation of the differentiable simulation also returns the av-
eraged partial derivatives of the simulation output with respect to all parameters. Each overall
optimization process runs sequentially on a single processor core and is terminated once a time
budget specified with respect to wall-clock time is exceeded.

The experiments were conducted on two machines, each equipped with two 16-core Intel Xeon
CPU E5-2683v4 and 256 GB RAM, running CentOS Linux 7.9.2009. The automatic differentiation
relied on Adept [42]. For optimization, we employed the ensmallen library [22].

5.1 State Propagation on a Cellular Grid

We first focus on the fidelity of our approach when executing the differentiable implementation
of the abstract state propagation model. To this end, we compare the simulation output between
the differentiable model and the discrete reference model as well as gradients computed using
automatic differentiation and finite differences.

Each simulation is initialized using a single cell with state true (or 1.0 in the differentiable simu-
lation) at the center of a 15 × 15 grid. During initialization, the per-cell success probabilities for the
Bernoulli trials are drawn from a uniform distribution on [0,pmax]. In total, there are 225 simulation
parameters. Each simulation is terminated after 15 steps. As the simulation is highly stochastic, we
consider batches of simulation runs and calculate the simulation output and gradients across an
entire batch at a time.
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Table 1. Mean Absolute Error when Comparing the Final Cell States from the

Discrete Cellular Automaton Model and Its Smoothed Counterpart

Slope pmax = 0.125 pmax = 0.25 pmax = 0.5 pmax = 1

2 0.47 ± 0.15 0.30 ± 0.16 0.37 ± 0.08 0.38 ± 0.04
8 0.03 ± 0.04 0.037 ± 0.06 0.044 ± 0.09 0.031 ± 0.07
32 0.007 ± 0.009 0.013 ± 0.01 0.005 ± 0.008 0.001 ± 0.004
128 0.007 ± 0.009 0.012 ± 0.01 0.004 ± 0.007 0.0009 ± 0.004

∞∞∞ 0.007 ± 0.009 0.012 ± 0.01 0.004 ± 0.007 0.0009 ± 0.004

For reference, setting the slope of the logistic function to∞ represents the comparison of

two batches of discrete runs. Beyond a slope of 32, the smoothed model closely follows the

discrete reference.

Table 1 compares the simulation output from the differentiable and discrete simulations for
batches of 1 000 simulation runs. We list the mean absolute error and its standard deviation across
the cell states. The slope of the logistic function is varied to determine how closely the differ-
entiable model approximates the discrete reference model. We observe that the error diminishes
when increasing the slope of the logistic function. At slopes of 32 and beyond, the mean absolute
error is as low as in a comparison of two discrete runs, which is shown on the bottom row of the
table.

We also assessed the fidelity of the computed gradient in a synthetic calibration problem com-
pared with two methods based on finite differences. The results, in which we observed that the
gradients computed using automatic differentiation most closely reflected the model behavior in
most cases, are shown in detail in the supplementary materials.

5.2 Epidemics Model on a Graph

To assess the fidelity of the differentiable Susceptible-Infected-Recovered model, we executed
100 simulations each for 1 000 parametrizations of a scenario populated by 1 000 agents moving
across a random geometric graph with 500 nodes and an average degree of 5, each run spanning
10 timesteps. The per-location infection rate coefficients and the initial infection probability were
drawn fromU (0, 0.1). The recovery rate was drawn fromU (0, 0.01). The slope of the logistic func-
tion was set to 128. Figure 4 shows a histogram of the percentage of agents attributed to a different
state than that in the non-differentiable reference runs. The median deviation amounts to 0.54% of
the agents, and the 95% and 99% quantiles are 1.17% and 1.48%, indicating that the differentiable
model closely represents the reference model.

The differentiable simulation is associated with substantial overhead: a simulation of 10 000
agents on a graph of 5 000 nodes was slowed down by a factor of 20.1. The memory consumption
increased from about 7 MiB to 252 MiB, a factor of 36. In Section 5.5, we will exploit sparsity in
the differentiable model to reduce the overhead.

We also conducted an optimization experiment in which we calibrated a simulation of 10 000
agents on a graph of 5 000 nodes to a state trajectory across 10 steps of a randomized reference run.
A recent similar calibration effort for an epidemics model operated on a neural surrogate instead
of a full agent-based model [5].

Figure 5(a) shows the optimization progress across simulation batches. When considering the
progress across simulation batches, we observe that the gradient-based methods achieve similar
initial converge speeds compared with the best-performing gradient-free methods CNE and DE.
Since practical applications are concerned with the solution quality achieved within a given time or
compute budget, Figure 5(b) shows the progress across wall-clock time, which, due to the overhead
of the differentiable simulations, is slower with the gradient-based methods. Apart from SPSA and

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 4, Article 27. Publication date: November 2022.



27:12 P. Andelfinger

Fig. 4. Comparison of results from the differentiable and non-differentiable epidemics models. The vertical

and dashed lines indicate the median and 95% quantile.

Fig. 5. Progress of the epidemics model calibration.

SA, all methods achieved a good fit to the reference trajectory within the time budget of 6 h. CNE
and DE achieved the best results with about 0.8% and 1.1% misattributed agent states compared
with 2.3% to 2.5% using the gradient-based methods. For comparison, the solutions identified by
SPSA and SA misattributed 22% and 26% of the states.

5.3 Microscopic Traffic Simulation

5.3.1 Single Multi-Lane Road. We first study the deviation of the results generated by the fully
differentiable model as compared with a non-differentiable reference implementation. The road has
three lanes, 250 m in length. A traffic light is positioned at 100 m, with an overall period of 10 s,
divided into green and red phases of 5 s each. The speed limit is set to 50 km/h. Lane changes
may occur every 2.5 s, requiring a minimum clearance gain of 10 m. The IDM parameters defining
the maximum acceleration and deceleration are both set to 2 m/s. Where not otherwise noted,
the same parameters are used in the microscopic traffic simulation experiments presented later.
The timestep size τ is set to 0.1 s. Initially, we position the vehicle at different lanes in non-zero
increments of 40 m from the beginning of the road.

Figure 6(a) compares the vehicle progress in meters throughout a simulation involving two ve-
hicles spanning 10 s of simulation time between the differentiable simulation and the non-differen-
tiable reference. The x axis shows the simulation input, which is the time at which the traffic light
first changes to red. We show results with the slope parameter of the logistic function set to 32.

The sharp increases in vehicle progress around 1 s and 4 s reflect situations in which a vehicle
passes the light just before it changes to red. The curve for the differentiable simulation slightly
deviates from the reference due to the smoothing of the traffic light control, which delays the
braking and acceleration when the light changes.

Figure 6(b) shows the derivative of the simulation output with regard to the input parameter
determined by automatic differentiation. The derivative expresses the sensitivity of the vehicle
progress to changes in the traffic light offset. We can see that, overall, the derivative follows the
slope of the simulation output curve, sharp increases in the simulation output being reflected by
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Fig. 6. Overall vehicle progress and its derivative in the single-road scenario with two vehicles.

Fig. 7. Performance of the fully differentiable traffic simulation relative to the discrete reference simulation.

The overhead increases strongly with the vehicle count.

spikes in the derivative. However, an additional negative spike at an offset of around 7.5 s illustrates
that the derivative represents the slope only in a given point of the simulation input and, thus,
is sensitive to implementation artifacts. Such artifacts occur when a real value that represents a
Boolean or integer deviates too far from its reference value. A resulting minor deviation from the
reference simulation can translate to a large derivative.

We measured the performance of the differentiable simulation compared with the basic refer-
ence implementation. The benefits of our approach depend critically on its overhead of the dif-
ferentiable model implementation as compared with the discrete reference. An execution of the
differentiable simulation returns the simulation output and its gradient at the current parameter
combination. Sampling-based methods, such as traditional finite differences, can employ the sub-
stantially faster original discrete model. If the required series of simulation runs, which may be
parallelized on supercomputing clusters, can be completed faster than a single run of the differen-
tiable model, the sampling-based method is to be preferred.

Figure 7 shows the relative wall-clock time per run and the relative memory usage. The main
overhead is induced by the simulation itself, during which the operations are recorded in prepara-
tion for the subsequent differentiation step. The contribution of the differentiation at 32 vehicles
was about 170 s of a total of 789 s, or about 22%. The results demonstrate the enormous execution
time overhead of this fully differentiable model implementation, which we address in the following
by a selective substitution of model elements.

5.3.2 Grid Network with Static Signal Timings. We now evaluate the traffic model in which
we restricted the differentiable aspects to the traffic light control and the vehicles’ longitudinal
movement. The grid network used in the experiments is composed of three-lane roads 100 m in
length, with a speed limit of 35 km/h. At an intersection, a vehicle advances to the road on the left,
right, or straight ahead with probabilities 0.05, 0.05, and 0.9.
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Fig. 8. Performance of the traffic simulation on a grid network relative to a non-differentiable reference

implementation. The overhead is substantially smaller compared with the fully differentiable model (see

Figure 7).

Figure 8 shows the performance comparison with the non-differentiable reference simulation on
a grid composed of 50× 50 intersections spanning 180 s of simulation time, using a slope parameter
for the logistic function of 32. The traffic lights alternate between red and green phases of 10 s each.
While there is still a substantial overhead in memory usage and execution time, the overhead is
significantly lower than with the fully differentiable model. In particular, the execution time factor
is now only weakly affected by the number of vehicles. To give an indication of the potential
benefits of our approach, we can compare the time required to compute the gradient in one point
to traditional forward finite differences. Forward finite differences estimates the gradient based
on varying each of the 2 500 model parameters of the discrete model. Given that the differentiable
simulation is slower than the discrete model by a factor of about 16, one gradient computation
using our approach is roughly 2 500

16 = 156.25 times faster than forward finite differences. We note
that schemes for dimensionality reduction [29] and the parallel execution of simulation runs using
additional hardware resources may reduce or eliminate this gap in performance. Our evaluation
on overall optimization includes SPSA as an approximate scheme based on finite differences.

In contrast to the execution time, the relative memory consumption still increases with the
number of vehicles as the results of increasing numbers of intermediate computational operations
have to be stored to permit the subsequent gradient computation. Still, with an execution time
of 2.7 s and a memory usage of 1.6 GiB with 1 024 vehicles, and 47.2 s using 23.2 GiB with 16 384
vehicles, we consider this model to be sufficiently scalable to cover scenarios of practical relevance.

We evaluate the fidelity of the differentiable simulation compared with the non-differentiable
reference simulation using a scenario in which a single vehicle traverses the road network. In
Figure 9(a), we plot the vehicle’s velocity over time, which reflects the acceleration and deceleration
behavior depending on the states of the traffic lights encountered on its route. As expected, the
adherence to the velocities from the reference simulation improves when increasing the slope
parameter of the logistic function. With a slope of 32, the median absolute deviation in velocity
throughout the simulation run spanning 180 s of simulation time was 0.12 m/s, with 95% and 99%
quantiles of 0.88 m/s and 1.39 m/s, respectively.

Figure 9(b) shows the absolute deviation of the distance driven over time from the reference
simulation. With the slope parameter set to 2 and 8, the deviation accumulates to substantial dis-
tances, whereas a slope of 32 leads to a maximum deviation of only 5.7 m over the course of 180 s
of simulation time.

We now turn to the comparison of the gradient-based and gradient-free simulation-based op-
timization. Our goal is to maximize vehicle progress by adjusting traffic light timings. To limit
the number of optimization runs for evaluation, we adjust only two of the optimizers’ own
parameters and use the default values configured in the ensmallen library for the remaining pa-
rameters: (1) The step size (or its equivalent) is set to the values {10−3, 10−2, . . . , 100} and (2) for
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Fig. 9. Fidelity of the differentiable traffic simulation on a grid compared to the discrete reference implemen-

tation when varying the slope parameter of the logistic function. The deviation diminishes when increasing

the slope.

Fig. 10. Optimization progress for the 50 × 50 grid scenario using static traffic light control with a period

of 20 s.

DE and CNE, which combine the current best solutions only after completing a so-called genera-
tion of runs, we reduce the generation size from its default of 500 to 50. Each optimization process
starts from the same randomly initialized parameter combination. For each optimizer, we show the
improvement over the initial parameter combination for the step size that achieved the maximum
value within the time budget of 72 hours.

Figure 10(a) shows the optimization progress as the improvement over the initial random
parametrization for a 50× 50 grid populated with 2 500 vehicles, with an overall traffic light control
period of 20 s. The total number of parameters to be adjusted is 2 500. Each point in the parame-
ter space is evaluated by executing a batch of 10 simulation runs, averaging the returned output
values and, for the differentiable simulation, the gradients. To avoid an excessive impact of large
individual derivatives, we employ gradient clipping [63], restricting the derivatives to the arbitrar-
ily chosen interval [−10, 10]. The same initial vehicle positions are used in all runs, randomizing
only the turns at intersections, to introduce sufficient regularity in the traffic patterns to permit
an optimization of the traffic light timings. Due to the overhead of the differentiable simulation,
the gradient-based methods executed only about 4 000 simulation batches within the time budget,
compared with about 64 000 with the gradient-free methods. However, the optimization progress
per batch is immensely faster than with the gradient-free methods. For instance, after 100 batches,
all gradient-based methods achieve an improvement of about 100 km, whereas the improvement
achieved by any of the gradient-free methods was still below 20 km.

Again, we also consider the progress across wall-clock time as plotted in Figure 10(b). Due to the
faster execution of the non-differentiable reference simulation, the initial benefit of the gradient-
based optimization is somewhat reduced. Still, the best solution quality up to any given point in
time is still vastly superior with the gradient-based methods.
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Fig. 11. Optimization progress with 50 × 50 intersections and a traffic light control period of 40 s.

Fig. 12. Optimization progress with 100 × 100 intersections.

To show the validity of the comparison between the gradient-based and gradient-free opti-
mization results, we used the highest-quality solution returned by Adam as input to the non-
differentiable reference simulation, executing 100 runs. The mean overall vehicle progress includes
the progress in the initial solution, with 95% confidence intervals of 3 467.2 ± 0.8 km in the differ-
entiable simulation and 3 375.1 ± 0.9 km in the non-differentiable simulation. For comparison, the
best solution found using CNE translated to only 3 175.2 ± 0.9 km of vehicle progress.

We repeated the experiment after increasing the traffic light period from 20 s to 40 s. In
Figure 11, we see that in this configuration, the gradient-based methods are outperformed by
CNE, achieving a similar solution quality to that of DE. A likely reason is given by the periodic
step function: with a longer light period, there is a larger probability of generating very small
gradients, which pose a challenge to the gradient-based methods [41] (see Section 6).

The experiment was repeated with 100 × 100 intersections and 10 000 vehicles, which increases
the number of parameters to 10 000 at the same vehicle density. Figures 12(a) and 12(b) show that
the advantage of the gradient-based methods is more pronounced, with consistently better solution
quality compared with the gradient-free methods.

Finally, we carried out an optimization with an alternative simulation output. Now, instead of
the overall vehicle progress, we aim to minimize the cumulative delay at intersections summed
across the vehicles. We define the delay as the time spent at velocities below 0.1m

s
. Figure 13

shows the reduction in delay compared with the initial random parametrization over wall-clock
time. Overall, the results are similar to the previous experiments, with the gradient-based methods
exhibiting a faster increase in solution quality than the gradient-free methods.

5.3.3 Grid Network with Neural Network–Controlled Signals. An optimization experiment simi-
lar to that described earlier was carried out on a 5 × 5 grid populated by 200 vehicles, introducing
dynamic traffic light control by a neural network. Given that each decision of the traffic light con-
trol remains in effect for 20 s, an optimal policy would consider not only the vehicle positions at
each intersection but would also include the positions and traffic light phase at the neighboring
intersections. The number of neurons in the hidden layer was set to 60, resulting in 91 585 neural
network coefficients forming the simulation input. All optimization methods started from the same
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Fig. 13. Optimization progress for the 50 × 50 grid scenario using static traffic light control with a period of

20 s, using the cumulative delay as the simulation output to be minimized.

Fig. 14. Optimization progress for the grid traffic scenario with neural network–controlled traffic lights.

initial parameter combination drawn from a standard normal distribution. After preliminary exper-
iments, we accelerated the optimization progress by randomizing the initial vehicle positions for
each run and by modifying the simulation output to be the minimum progress among the vehicles
instead of the sum progress.

Figure 14 shows that for this problem, the gradient-free methods achieve somewhat faster initial
progress. However, beyond about 12 h, Adam and Nadam outperform all gradient-free methods.
At the end of the time budget of 120 h, the highest overall vehicle progress achieved by Adam,
as measured in the non-differentiable simulation, was 47.8 ± 0.7 km. The best result among the
gradient-free methods achieved by CNE was 31.3 ± 0.9 km. Given 91 585 inputs, the cost of esti-
mating gradients using finite differences is again prohibitive.

5.4 Combining Local and Global Search

In the previous experiments, we have seen that gradient-based optimization outperforms gradient-
free methods in many cases. However, gradient-based methods carry out a local search, that is, a
search for a local optimum starting from an initial parameter combination. Although the stochastic-
ity of the considered model, a sufficiently large learning rate, or heuristics such as momentum make
it possible to escape local minima in some cases, the optimization process may still explore areas of
the simulation response surface far from the global optimum and become stuck near low-quality
local optima. This issue is particularly pressing if the simulation response surface is non-smooth,
which depends on properties of the simulation model itself as well as the chosen simulation output
function. A natural approach is to combine gradient-based local search with gradient-free global
search methods, for example, genetic algorithms, which yielded promising results in other problem
domains [37, 67]. By alternating local and global search, the local search is supplied with multiple
starting points in the parameter space from which a local optimum can be identified.

We repeated the experiments from Section 5.3.2 using a combination of gradient-based and
gradient-free optimization. To this end, we combined the gradient-based local search using Adam
with a global search using CNE, which in the previous experiments achieved by far the best
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Fig. 15. Progress of traffic light timing optimization when combining gradient-based local search and

gradient-free global search.

solution quality out of the gradient-free methods. For CNE, we used a fixed step size of 1, which
performed best in all of the previous experiments. As previously, we set the step size for Adam to
each value in {10−3, 10−2, . . . , 100} and show the results for the best-performing step size. During
the optimization, we alternate between gradient-based and gradient-free search, switching meth-
ods whenever the current method fails to improve on the best solution for 30 minutes. The search
then resumes using the current best solution.

Figure 15 shows the optimization progress for the different parameterizations of the traffic sim-
ulation using static signal timings on a grid, comparing the combined search using Adam and CNE
to a search using only Adam or CNE in isolation. A slight reduction in solution quality compared
with Adam alone is observed only for 100 × 100 intersections and a traffic light control period of
20 s. In all other cases, the combined search achieved higher performance than Adam on its own.
The largest relative increase in solution quality was observed for 100 × 100 intersections with a
traffic light control period of 40 s. When running the discrete reference simulation using the best
solutions identified using the combined search and Adam alone, the overall vehicle progress was
11.03× 106 m and 10.80× 106m, respectively. For 50 × 50 intersections with a traffic control period
of 40 s, CNE outperformed the combined search as in the previous experiments, which was not
able to identify higher-quality solutions beyond the first 14 h.

We conclude that the combined search can further improve the quality of the identified solutions.
However, it is still possible for the combined search to get caught near local optima.

5.5 Exploiting Sparsity

In Section 5.3, we studied the execution time and memory consumption of differentiable simula-
tions. By restricting the differentiable model elements, memory consumption was reduced suffi-
ciently to support large-scale simulations. However, increased execution times and gradual growth
of the computational graph stored for subsequent reverse-mode differentiation still limits the maxi-
mum feasible simulation duration and scale. Here, we attempt to further reduce memory consump-
tion based on the observation that actions in agent-based simulations are frequently sparse, that
is, not all actions are carried out by all agents at each timestep. We recall from Section 3.1 that a
conditional branch such as if (x >= 0) y = 1; is represented in the differentiable simulation as

ACM Transactions on Modeling and Computer Simulation, Vol. 32, No. 4, Article 27. Publication date: November 2022.



Towards Differentiable Agent-Based Simulation 27:19

double z = logistic(x, 0); y = z * 1 + (1 - z) * y;. In the differentiable simulation, these
arithmetic operations are executed and stored in the computational graph even if x � 0, although
this implies that z is very close to 0 and the effects of the operations both on the simulation output
and its derivatives are likely to be miniscule.

To avoid such branches entirely even in the differentiable simulation, we introduce a branch
threshold tb . The differentiable operations are guarded using non-differentiable branches to skip
them entirely if the value returned by the logistic function is below tb . We implemented this ap-
proach for the traffic simulation and the epidemics simulation in order to answer two questions:

(1) How is the simulation execution time and memory consumption affected by different branch
thresholds?

(2) Do the resulting gradients still hold sufficient information to support simulation-based
optimization?

For the epidemics model, both the execution time and memory consumption decrease severely
when increasing the branch threshold. With a branch threshold of 10−1, the execution time and
memory consumption are now higher by factors of only 4.3 and 8.7 compared with those of the
non-differentiable reference model. This corresponds to reductions in execution time and memory
consumption by factors of 4.7 and 3.6 compared with the original differentiable model.

We now consider the traffic simulation on a grid of 50 × 50 intersections populated by 2 500
agents. In this model, we previously severely restricted the differentiable model elements (see
Section 4.3.2), which reduced the sparsity in the model logic. Thus, the additional effect of intro-
ducing a branch threshold is minor: we observe a speedup by about 17% and a reduction in memory
consumption by only 8%.

We also studied the effects of introducing the branch threshold on the optimization progress.
We observed that the optimization progress per simulation batch remains largely unchanged. This
indicates that the introduction of the branch threshold has not substantially affected the utility
of the computed derivatives for the gradient-based optimization. Notably, the observation holds
even for a branch threshold as high as 0.1. Due to the decreased simulation execution times,
Adam was able to converge faster with larger branch thresholds, keeping pace with CNE at a
branch threshold of 10−1. As in Section 5.2, CNE converges to solutions of slightly higher qual-
ity than Adam, with about 0.7% deviation from the reference run for CNE, and 2.3% to 2.4% for
Adam.

In the traffic light timing optimization, we do not observe an improvement over the results
from Section 5.3. The total number of executed batches within the time budget varied from 3 939
without a branch threshold to 4 565 with a branch threshold of 0.5. However, we observe that the
resulting solution quality remains virtually identical independently of the branch threshold, that
is, the computed derivatives were again able to support the gradient-based optimization even if
large branch thresholds were configured.

From these results, we conclude that the exploitation of sparsity in the agent actions can be
beneficial both in terms of sheer execution times and memory usage and in terms of the optimiza-
tion progress. However, the effects are highly dependent on the amount of sparsity present in the
differentiable model.

6 LIMITATIONS AND RESEARCH DIRECTIONS

Our experiments show the benefit of differentiable agent-based simulation in several optimization
problems. Still, a number of avenues remain to be explored, the main focal points being the fidelity
and performance of the differentiable models and the applicability of the approach by model do-
main experts and in the context of machine learning.
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6.1 Fidelity

Most of the presented building blocks rely on approximations using the logistic function, the error
being adjusted by a slope parameter. The configuration of the slope involves a trade-off: with steep
slopes, the logistic function closely approximates a step function. However, negative or positive
arguments with sufficiently large magnitude quickly approach 0 or 1, respectively. Similar to the
vanishing gradient problem in machine learning [41], the resulting small gradients may lead to a
sluggish optimization. On the other hand, with shallow slopes, arguments close to zero yield large
deviations from the original step function. An important direction for future work lies in deter-
mining model-specific error bounds based on known bounds for the building blocks (e.g., [56]),
and on the detection of artifacts.

6.2 Performance

We have seen that the overhead of the differentiable model variants is substantial, limiting their
applicability for large scenarios. One of the causes is the implementation of branching: in effect,
the operations of all possible branches are executed. While we showed that the selective use of dif-
ferentiable model elements can limit the overhead, a challenge lies in identifying the model aspects
for which gradient information is required. For instance, in the scalable traffic model variants, the
sensitivity of lane-changing decisions to the model input is not captured in the computed gradients.

If an optimization targets the steady-state behavior of a model, some overhead could be avoided
by first executing a fast non-differentiable implementation. Once a steady state has been reached,
the simulation state is used to initialize a differentiable implementation that computes the output
and gradient.

Memory consumption may potentially be reduced by forming so-called super-nodes [58]: first,
groups of operations are identified that are repeatedly executed. Then, by manually defining an
operation that represents the contribution of an entire group to the partial derivatives, the gradient
computation is simplified. In agent-based simulations, sequences of operations executed for every
agent and at every timestep may be candidates for super-nodes.

6.3 Applicability

The models presented in Section 4 were implemented manually, which, despite the relative sim-
plicity of the considered models, proved to be somewhat cumbersome and error prone. Automatic
translations could support more convenient development processes. Recent efforts aim to define
differentiable general-purpose programming languages (e.g., [72]). Domain-specific languages de-
fined in a similar vein could cater to agent-based modeling experts and facilitate the generation of
optimized model code, for example, by exploiting sparsity as shown in Section 5.5.

Some recent research aims at integrating differentiable programming facilities into machine
learning frameworks such as PyTorch [51]. Implementing differentiable agent-based models within
such frameworks would enable a natural and efficient unification of simulation-based optimiza-
tion and neural network training, making use of the frameworks’ optimized GPU-based imple-
mentations of neural networks and automatic differentiation while accelerating the model execu-
tion through fine-grained manycore parallelism [79]. We discuss recent work towards this goal in
Section 7.5.

7 RELATED WORK

Existing work in a several fields has considered the approximate execution of programs for a num-
ber of different purposes. In the following, we contrast these works with ours and differentiate our
approach from existing methods to compute gradients of simulations.
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7.1 Approximate Computing

Approximate computing techniques carry out computations at reduced fidelity, for example, by
scaling the numerical precision or by relying on neural network–based function approxima-
tion [60]. Often, the intention is to reduce computational cost, to increase resilience to errors,
or to solve problems for which an exact solution is not known. In contrast to these aims, the goal
of our approximations is to allow automatic differentiation to extract gradient information. In the
context of machine learning, there is currently intensive research towards approximate differen-
tiable algorithms for problems such as path finding [76] and sorting [12, 23, 36]. In future work,
we plan to build on such approximate algorithms to express increasingly complex agent behavior
in a differentiable manner.

7.2 Sensitivity Analysis and Uncertainty Quantification

Sensitivity analysis is “the study of how uncertainty in the output of a model (numerical or other-
wise) can be apportioned to different sources of uncertainty in the model input” [70]. In the context
of optimization, sensitivity analysis is used to determine the effects of changes in the model param-
eters on the quality of the solution represented by the model output [17]. Automatic differentiation
(see Section 2) enables a local first-order sensitivity analysis by calculating the partial derivatives
at a given combination of model parameters. This is in contrast to global sensitivity analysis meth-
ods, which explore the model response at several points in the parameter space. Our approach
employs automatic differentiation to determine local sensitivities to a given combination of model
parameters but employs smoothing to account for effects of control flow branches not visited at
the current parameter combination.

Closely related to sensitivity analysis is the field of uncertainty quantification. Methods for for-
ward propagation of uncertainty are concerned with quantifying the uncertainty in a system’s
output given uncertainty in the parameters [45]. A simple form of forward propagation of un-
certainty is given by differential error analysis, which calculates the variance of the model output
based on its derivative with respect to all inputs and the inputs’ own variances [9]. When targeting
computer programs, the partial derivatives used in differential error analysis can be calculated via
automatic differentiation. The literature distinguishes uncertainty quantification methods based
on their intrusiveness: non-intrusive methods evaluate the original model at various points in the
parameter space, whereas intrusive methods require modifications to the model, for example, the
substitution of model components by surrogates. Our approach shares with intrusive uncertainty
quantification methods its reliance on model adaptations. As described in the next section, our
future work will explore the use of smooth interpretation, which is a form of approximative un-
certainty quantification with the goal of facilitating optimization.

7.3 Smooth Interpretation

Smooth interpretation [18] is a method that aims to make general programs more amenable to
numerical optimization by smoothing across discontinuities. The program input is supplied in the
form of Gaussian random variables and propagated through a symbolic execution of the program,
approximating the resulting complex distributions by combinations of Gaussian distributions
based on rules defined in a smoothed semantics. Hence, smooth interpretation is a form of
uncertainty quantification. To limit the overhead of the approach, all intermediate distributions
are approximated using Gaussian mixture distributions. For instance, after modifying a variable
v in the body of a conditional branch, the mixture distribution of v reflects the probabilities
of taking or bypassing the branch together with v’s respective expectation and variance. The
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approach constitutes a potential alternative to our bottom-up construction of differentiable model
implementations based on a set of smooth building blocks. Smooth interpretation can also be
regarded as a special case of probabilistic programming, in which the probability distribution
defined by a probabilistic program is computed automatically [33]. However, in contrast to
most probabilistic programming approaches, the Gaussian approximations used by smooth
interpretation avoid the need to sample from the input or intermediate distributions. We plan
to explore the overhead of smooth interpretation; its ability to accurately capture the logic of
agent-based models is part of our future work. By propagating variances assigned to the input
variables throughout the simulation, smooth interpretation would provide a justification for
the degree of smoothing applied at each discontinuity of the model and would permit a clear
interpretation of the smoothed simulation outputs as approximate expectations.

7.4 Infinitesimal Perturbation Analysis

In Infinitesimal Perturbation Analysis (IPA) [40], gradient expressions are derived through an anal-
ysis of the given model. In contrast to our approach, IPA focuses on discrete-event simulations.
While IPA can yield computations similar to those carried out by automatic differentiation, the
IPA literature derives model-specific gradient estimators manually (e.g., [14, 19, 31, 44]), which
is limited to relatively simple models. In contrast, automatic differentiation allows gradients to
be computed directly from model implementations in general-purpose programming languages.
A key concern in the literature on IPA is the bias introduced when aggregating derivatives from
multiple runs of a stochastic simulation in the presence of discontinuities. Smoothed IPA [32] is a
method to produce unbiased gradient estimations in the presence of discontinuities. By expressing
the derivatives using conditional expectations, discontinuities can be eliminated for some simula-
tions. However, Smoothed IPA requires a custom and manual analysis of each given simulation
model. Our use of automatic differentiation allows gradients to be computed without manually de-
termining gradient expressions. We eliminate discontinuities by the use of smooth approximations.
Although we studied the fidelity of the computed gradients empirically in Section 5.1, we defer a
closer analysis of the relationship between the smoothing and bias in the aggregated derivatives
to future work.

7.5 Computing Gradients of Agent-Based Simulations

Considering existing research related to agent-based simulation, a continuous approximation of
cellular automata (CAs) was proposed to enable gradient-based search for CAs with desired prop-
erties [59]. As in IPA, expressions for the partial derivatives are determined manually.

A recent preprint proposes the use of automatic differentiation to calibrate a variant of the Social
Force model for pedestrian dynamics [38] against real-world data [55]. Their model variant repre-
sents the forces among the simulated agents using multi-layer perceptrons, which act as universal
function approximators. Since the Social Force model is specified with respect to continuous time
and space, it is a natural candidate for automatic differentiation.

In another recent preprint, a differentiable epidemics model implemented in a machine learning
framework is presented [20]. The propagation of infections among the agents’ interaction graph is
carried out using a convolutional graph neural network [53]. In contrast, our own epidemics model
represents the interaction graph as a non-differentiable model element, that is, the graph topology
is reflected in the computed gradient only through the resulting agent interactions. However, their
work does not study the computed gradients or report results from optimization experiments. As
part of our future work, we are planning to explore the benefits of accounting for the graph topol-
ogy as part of the gradient computation in simulation-based optimization problems.
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These related works share our goal of enabling gradient-based optimization. However, they
are specific to the considered models and do not provide more general sets of building blocks to
construct differentiable agent-based simulations.

8 CONCLUSIONS

Simulation-based optimization of agent-based models with large numbers of inputs is usually car-
ried out either on surrogate models, which typically abandon the individual-based level of detail
of an original model, or using gradient-free methods such as genetic algorithms. To enable direct
gradient-based optimization of agent-based models, we proposed the construction of differentiable
implementations using smooth building blocks, enabling an automatic computation of the partial
derivatives reflecting the sensitivity of the simulation output to the inputs.

To explore the merit of this novel approach to extracting gradients from agent-based simulations,
our focus was on the question of whether gradient-based optimization using the differentiable
models can outperform gradient-free methods. By constructing models from combinations of dif-
ferentiable and non-differentiable model elements, we achieved sufficient performance to tackle
scenarios populated by thousands of agents. Comparing the relative solution quality and conver-
gence speed of gradient-based and gradient-free methods in simulation-based optimization experi-
ments, we observed that the gradient-based methods in fact achieved better results in several cases.
Particularly vast margins were observed in problems with large input dimension, which indicates
that the approach could extend the reach of simulation-based optimization using agent-based mod-
els to problems that could previously only be tackled via surrogate modeling at a reduced level of
detail. As an additional benefit of the approach, we demonstrated that neural network–controlled
simulation entities embedded into the differentiable model logic can efficiently be trained using
gradient-based methods, with substantially superior results over gradient-free methods.

We studied two approaches to further improve the optimization progress. First, by alternating
gradient-free and gradient-based simulation, the solution quality within a given time budget was
increased. Second, we exploited sparsity in the model logic by avoiding control flow paths with
only a minor contribution to the simulation output and gradients. The execution time and memory
usage of the epidemics simulation were substantially decreased without affecting the utility of the
computed gradients.

Promising research directions lie in automated methods to reduce the overhead of differentiable
simulations, in providing language support for expressing differentiable models in a natural way,
and in model implementations targeting machine learning frameworks.
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