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ABSTRACT
Synchronization algorithms for parallel simulation struggle to at-

tain speedup if the simulation entities are tightly coupled and their

interactions are difficult to predict. Window Racer is a novel par-

allel synchronization algorithm for shared-memory architectures

specifically targeted toward attaining speedup in these challenging

cases. The key idea is to allow the processing elements to specula-

tively execute sequences of dependent events even across partition

boundaries through fine-grained locking and low-overhead roll-

backs, while at the same time negotiating a global synchronization

window that rules out transitive rollbacks. In performance mea-

surements using a variant of the PHold benchmark model, Window

Racer outperforms an established implementation of the TimeWarp

algorithm in model configurations where events are often sched-

uled with near-zero delay. In an ablation study, we pinpoint the

performance impact of our algorithm’s individual features by reduc-

ing Window Racer to two existing algorithms. We further study the

algorithm’s ability to attain speedup in simulations of bio-chemical

reaction networks, a particularly challenging class of simulations

with tightly coupled state transitions.
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(a) Classical synchronization is based on a strict entity-based
partitioning in shared memory. Each thread is responsible for
events executed at a subset of the simulated entities (highlighted
in shades of gray). Thread interactions are required when event
scheduling crosses thread boundaries.
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(b) Window Racer applies a less restrictive assignment of entities
to threads. Each thread attempts to execute event chains caused
by local entities regardless of the dependent events’ correspon-
dence to entities, reducing the need for thread interactions.

Figure 1: Contrasting classical synchronization approaches
with the proposed Window Racer algorithm.

1 INTRODUCTION
Optimistic synchronization algorithms for parallel and distributed

simulation [17] can be applied to models where lookahead infor-

mation, which would provide lower bounds on the delays between

events and their creation, is unavailable. These algorithms execute

events speculatively and carry out rollbacks when an erroneous

event ordering is detected. Much of the research on these algorithms

has focused on the TimeWarp algorithm [25], whose asynchronous

mode of execution allows processing elements (PEs) to advance

in simulation time with a considerable degree of independence.

However, some discrete-event simulation models, such as those rep-

resenting bio-chemical reaction networks [19, 20], are comprised

of simulation objects that frequently interact across PE boundaries

with short delays or even instantaneously. When executing models

with these properties using TimeWarp, frequent rollbacks can limit
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the performance [26]. Synchronous algorithms such as Breathing

Time Buckets [46] restrict the progress of the PEs more severely

by computing a globally applicable window in simulation time.

Hence, the amount of simulation time covered in a round can be

very short, leading to large amounts of overhead due to frequent

synchronization among PEs.

WindowRacer is a synchronous algorithm aimed toward discrete-

event models of tightly coupled systems involving large numbers of

atomic simulation objects, which we refer to as entities. The Win-

dow Racer algorithm is tailored to shared-memory architectures

as encountered in modern compute nodes, which routinely offer

between dozens and hundreds of cores. The algorithm’s name is

inspired by viewing the PEs as engaged in a “race” to fit as many

events as possible into a gradually closing synchronization window.

Within each synchronization round, the PEs negotiate the final

size of the synchronization window as part of the event execution

through fine-grained locking and atomic operations. Compared to

the Breathing Time Buckets algorithm, substantially larger window

sizes are obtained by allowing PEs to execute newly scheduled

events even if they target remote entities (cf. Figure 1).

Beyond introducing Window Racer, the present work aims to

shed light on the types of models for which the algorithm is suited

and the impact of its algorithmic ideas on its performance. To this

end, we provide measurement results against the established sim-

ulator ROOT-Sim[38] for various parametrizations of the PHold

model [16] extended by events with near-zero delay. In our im-

plementation of Window Racer, which we make available to the

community
1
, the algorithm’s main novel features can be toggled

individually, allowing us to reduce the implementation to two ex-

isting algorithms. We use this capability to carry out an ablation

study showing the influence of the main algorithmic ideas using the

same underlying code. Having obtained an understanding of the

performance properties of the algorithm, experiments using models

of bio-chemical systems showcase the real-world applicability of

the algorithm.

Our main contributions are as follows:

• Window Racer, a speculative synchronization algorithm tar-

geting simulation models with zero lookahead.

• A performance comparison against ROOT-Sim using a syn-

thetic benchmark model.

• An ablation study to pinpoints the performance impact of

Window Racer’s algorithmic features.

• Measurements for simulations of bio-chemical reaction net-

works against a pool of state-of-the-art sequential simulators.

The remainder of the paper is structured as follows. In Section 2,

we discuss existing work on optimistic synchronization algorithms

and simulations of bio-chemical reaction networks. Section 3 de-

scribes our proposed algorithm. Section 4 presents measurements

using a synthetic benchmark and models of bio-chemical systems.

Section 5 summarizes our findings and concludes the paper.

2 RELATEDWORK
Much of the literature on optimistic algorithms for parallel and

distributed simulation focuses on the Time Warp algorithm [25],

in which the processing elements (PEs) operate asynchronously

1
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and communicate in a message-passing style. In the following, we

use Time Warp as our reference point to describe existing works

on efficient simulations of tightly interacting entities by exploiting

shared-memory architectures or by restricting the degree of opti-

mism. An overview of simulationmethods for bio-chemical reaction

networks provides background for our case study in Section 4.3.

2.1 Exploiting Shared Memory
Among the main overhead sources in the Time Warp algorithm is

the handling of transitive errors, which may occur when a straggler

event invalidates the creation of events that have already been sent

to remote PEs. To cancel an event created in error, traditional Time

Warp implementations send a so-called antimessage to the remote

PE. Fujimoto showed the potential for efficiency improvements in

shared-memory environments by avoiding the explicit sending of

antimessages [15]. Instead, a tree-based data structure is maintained

to track chains of event creations and is traversed to roll back

an event and all event creations it has caused. In Window Racer,

the need for explicit cancellation of individual event creations is

avoided entirely by negotiating a global synchronization window

that precludes transitive errors.

More extensive changes to the execution flow of Time Warp-

based simulations allow PEs to access shared simulation state. Space-

time memory and related approaches [18, 32, 36] introduce a tem-

poral versioning of shared state variables, enabling efficient read

and write accesses at each PE’s local point in time. Pellegrini et

al. propose an extension to Time Warp and operating system-level

mechanisms to transparently support events that carry out read

and write accesses to multiple entities [37]. InWindow Racer, entity

accesses across entities are managed through entity-level locking,

state saving, and rollbacks, reducing the need for explicit event

exchanges among PEs.

Ianni et al. presented a share-everything approach [24] that aban-

dons the binding of simulation entities to PEs altogether. Instead,

the PEs retrieve events from a shared event list pertaining to all

entities. Compared to the traditional Time Warp, their approach

focuses the computation on the globally earliest events, whose swift

execution is decisive for the overall performance. Similarly to this

work, Window Racer loosens the binding of the entities to PEs

during event execution. However, in Window Racer, the threads

immediately and largely independently execute causal chains of

events across arbitrary entities without the potential for congestion

on a shared event list.

Finally, the cost of entity interactions can be reduced by aggre-

gating entities both in traditional Time Warp [8] and in shared

memory-specific variants [30]. In effect, aggregation combines sets

of entities into joint sequential processes. As a consequence, event

exchanges within each process can be handled by a single PE. On

the other hand, larger degrees of aggregation reduce the concur-

rency in the simulated system and increase the cost of rollbacks due

to the increased state size. Window Racer’s synchronous execution

scheme benefits from the concurrency offered by models involving

large numbers of entities. To offer a fair performance comparison

to Time Warp implementations, we carried out our measurements

presented in Section 4.1 at various aggregation levels, reporting on

the best-performing Time Warp configuration.



2.2 Bounded Optimism and
Synchronous Algorithms

Models in which the entities frequently generate events with short

or zero-valued temporal delays offer fewer opportunities for asyn-

chronous processing. A variety of methods have been proposed

to bound the degree of optimism in Time Warp using a tuneable

window size [42, 48] or adaptive approaches based on estimations

of mis-speculation probabilities or overheads [13, 35, 51].

Breathing Time Buckets [44] is a synchronous optimistic algo-

rithm. In every synchronization round, each PE executes events up

to a tuneable upper bound in simulation time. Once all PEs have

finished execution, the event horizon is determined as the timestamp

of the earliest newly created event crossing a PE boundary. All PEs

roll back events with timestamps later than the event horizon and

discard events generated by the rolled-back events. Events gener-

ated before the event horizon are delivered to their target PEs. This

synchronization scheme is risk-free, i.e., it avoids transitive errors in

the sense that it is guaranteed that any event delivered to a remote

PE will eventually be committed. As a consequence, the need for

antimessages is avoided. The algorithm as described above is suited

both for distributed and shared-memory architectures. The Mini-

mum Time Buckets algorithm [52] is a specialization of Breathing

Time Buckets for shared-memory environments in which updates

to the event horizon are communicated to all PEs. Compared to

the original algorithm, the resulting event horizon in each round

remains unaltered. However, PEs can terminate the execution phase

earlier, reducing the probability of executing events guaranteed

to be rolled back. Breathing Time Warp [45] combines Breathing

Time Buckets with Time Warp by splitting each synchronization

round into a Time Warp phase allowing for transitive errors and a

risk-free Breathing Time Buckets phase.

S
3
A [2] is a domain-specific algorithm targeting simulations of

multi-agent systems. As in Breathing Time Buckets, each synchro-

nization round in S
3
A computes a globally valid time window that

permits each agent to carry out at most one transition. While being

tolerant to immediate inter-PE accesses handled by entity-level

locking, S
3
A’s restrictive synchronization scheme incurs the need

for large amounts of concurrency to achieve significant speedup.

Window Racer shares its risk-free synchronous execution mode

with Breathing Time Buckets and Minimum Time Buckets, as well

as the fine-grained locking with the S
3
A algorithm. However, it

differs from these approaches in its execution of chains of dependent

events independently of the events’ correspondence to simulation

entities. This feature, in conjunction with identifying the window

bound based on entity-level timestamps, allows Window Racer

to extract larger window sizes and thus performance in models

with limited concurrency. In Section 4.2, we disable these defining

features of Window Racer to lay bare their individual impacts.

2.3 Bio-Chemical Reaction Networks
Bio-chemical systems are frequently simulated using a family of al-

gorithm subsumed under the term Stochastic Simulation Algorithm

(SSA) [21]. Models used in this context abstract from the spatial dis-

tribution of individual model entities referred to as species. Instead,

the simulation state is comprised of sum densities or populations of

species of certain categories, which are altered by discrete events

in continuous time. Computationally, this mode of simulation leads

to a tightly coupled simulation state updated by fine-grained tran-

sitions often associated with short or zero-valued delays.

Concrete algorithms from the SSA family fall in twomain classes,

the Direct Method and the First Reaction Method. Most popular

approaches follow the Direct Method, which determines the next

reaction firing time by a mathematical expression based on all

possible reactions. The tight dependence of the next reaction on

the overall system state makes parallelization challenging.

In contrast, the First Reaction Method iteratively draws tentative

firing times, executes the earliest firing, and updates the system

state accordingly. A parallelization of this approach has shown

to attain high speedup on graphics processing units [10]. A more

sophisticated algorithm originating from the First Reaction Method

is the Next Reaction method (NRM). In this approach, tentative

firing times are scheduled in a priority queue. When a firing has

occurred, all dependent reactions are rescheduled via a static depen-

dency graph. Thanh et al. exploited the independence among the

reaction updates in a shared-memory environment [47]. Since the

NRM naturally aligns with the discrete-event paradigm, established

algorithms from optimistic parallel and distributed simulation can

also be applied, as outlined by Goldberg et al. [22]. Nevertheless, the

gainful parallelization of SSA models remains challenging due to

their fundamental underlying approximation: by abstracting from

spatial properties of the system, all communication is instant. Fur-

thermore, tight dependencies among reactions allow only for little

inherent parallelism.

When modeling large systems, the assumption of spatial homo-

geneity at the core of SSA is no longer appropriate. One intermedi-

ate approach between purely non-spatial SSA and fully spatial multi-

particle simulation [27] is the Next Subvolume Method (NSM) [11].

Here, the system is divided into subvolumes, each of which contains

its own population. Diffusion reactions occur among the species

in adjacent volumes, corresponding to physical movement and bal-

ancing among subvolumes. An implementation of the NSM in the

Aurora simulation environment [26] demonstrated the difficulties

of achieving speedup in a distributed-memory setting, where an

efficient parallelization across computationally fine-grained events

is particularly challenging. The Abstract Next Subvolume Method

represents a parallelization of the NSM by combining the Direct

Method with a parallel execution of the NRM [49]. Different imple-

mentations of the Abstract Next Subvolume Method using Breath-

ing Time Warp have been shown to outperform both Time Warp

and Breathing Time Buckets [50]. Another approach to paralleliz-

ing the NSM is to design dedicated parallel algorithms tailored to

the NSM’s known characteristics. One example is to estimate the

communication among simulation entities based on model-specific

knowledge and to minimize the overhead by performing rollbacks

only selectively. This approach has been applied to the All Events

Method, in which transitions are more costly than in the NSM,

making speedup more achievable [4], and later to the NSM [29].

The Window Racer algorithm presented in this paper is tailored

for efficient execution in the presence of events with near-zero or

zero delay. In Section 4.3, we apply Window Racer to a series of

NSM problems and study its performance with reference to a pool

of state-of-the-art sequential simulation tools.
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Figure 2: The Window Racer Algorithm. Each thread maintains a u-event list holding unconditional events for a subset of
entities. In the execute phase, threads process event chains generated by local entities’ unconditional events regardless for the
thread assignment of newly generated events, up to a dynamically computed window bound. In the commit phase, each thread
identifies local events that have become unconditional, which are inserted in the thread’s u-event list for the next iteration.

3 THEWINDOW RACER ALGORITHM
When entity interactions are largely local according to some notion

of proximity or are subject to sufficiently large temporal delays,

classical asynchronous synchronization algorithms such as the null-

message protocol or TimeWarp can extract parallelism from periods

in simulated time during which identifiable model segments operate

independently. If, on the other hand, the entities’ state changes are

tightly coupled, these algorithmsmay struggle to advance efficiently

in simulated time due to stalled PEs (conservative algorithms) or

frequent rollbacks (optimistic algorithms).

The underlying design rationale of the Window Racer algorithm

is to operate under the expectation of global entity interactions

with little or no temporal delay. This assumption leads to an algo-

rithm that operates optimistically to make progress without the

need for guarantees on the delays between events, yet restricts

the independent progress of PEs to limit the frequency and cost

of rollbacks. In Window Racer, the simulation advances as a series

of dynamically sized time windows negotiated among threads in a

shared-memory setting. Transitive errors across PEs and the result-

ing need for antimessages are avoided entirely, which puts Window

Racer in the category of risk-free algorithms [40].

WindowRacer’s design takes inspiration from Steinman’s Breath-

ing Time Buckets [46] and the S
3
A algorithm [2], from which it

differs in two features crucial to its performance.

• Execution of newly generated events regardless of thread
assignment. Through fine-grained locking, threads directly

and safely access the state of arbitrary entities. Hence, while

threads are executing events, new events are never exchanged

as messages or inserted in remote threads’ event lists.

• Rollbacks and identification of window bound based
on entity-level straggler events. The bound in simulation

time up to which events can be committed is negotiated

as part of the event execution. Although each thread holds

event lists pertaining to an entire set of simulation entities,

stragglers are identified on the level of individual entities,

decreasing their frequency and cost.

The impact of these features over the existing algorithms is

assessed in the ablation study presented in Section 4.2.

In the following, we describe Window Racer’s round-based syn-

chronous mode as shown in Figure 2. Pseudo code is given in

Algorithm 1 Main loop of the Window Racer algorithm.

1 while not termination_criterion_reached():
2 lower_bound = compute_global_minimum_ts()
3 upper_bound = lower_bound + 𝜏0
4

5 # Execute phase
6 parallel for thread in threads:
7 while (thread.uel ∪ thread.cel).earliest_event().ts < upper_bound:
8 ev = (thread.uel ∪ thread.cel).pop_earliest_event()
9 ev.entity.try_execute(ev)
10

11 # Local insertion regardless of entity's thread assignment
12 thread.cel.insert(newly_created_events)
13

14 cel.clear()
15

16 barrier_synchronize()
17

18 # Commit phase
19 parallel for thread in threads:
20 for entity in threads.entities:
21 if len(entity.event_list) == 0 or
22 entity.latest_state.timestamp ≥ upper_bound:
23 entity.clear_event_list_and_state_list()
24 continue
25

26 entity.roll_back(latest_state_before_upper_bound)
27

28 for event in entity.event_list:
29 if event.creation_timestamp < upper_bound and
30 event.timestamp ≥ upper_bound:
31 thread.uel.insert(event)
32 # All other events have already been committed
33 # or can be discarded
34

35 entity.clear_event_list_and_state_list()
36

37 barrier_synchronize()

Algorithms 1 and 2. In line with the concept of conditional knowl-

edge [7], we distinguish unconditional and conditional events, i.e.,
events that are certain to occur at some point throughout the sim-

ulation, and tentative events whose creation may be an effect of

mis-speculation. In the following, we refer to unconditional and

conditional events as u-events and c-events. Each thread maintains

its own u-event list (uel) holding unconditional events pertaining
to the thread’s assigned model segment according to the chosen

partitioning. In addition, each thread holds a temporary c-event list

(cel), which is cleared before each iteration of the algorithm. In con-

trast to the u-event list, a thread’s c-event list can hold conditional

events targeting local and remote entities.



The algorithm proceeds in a series of rounds, each encompassing

the two phases execute and commit. At the beginning of a round, the
threads determine the initial upper bound of a global synchroniza-

tion window in simulation time as the sum of the earliest timestamp

among all events and an initial window size 𝜏0, which is a tuning

parameter. In the execute phase, each thread iteratively executes

the earliest event from the u-event or c-event list. When the cur-

rent event schedules a new event, the new event is inserted into

the thread’s local c-event list. Importantly, while unconditional

events always pertain to thread-local entities, conditional events

may pertain to entities assigned to remote threads. It is particular

to Window Racer that even remote conditional events are executed

by the current thread. In order to avoid race conditions, the execu-

tion of remote entities’ events requires mutual exclusion, which we

attain by fine-grained locking on the entity level. Before a thread

attempts to execute an event at a thread-local entity (unconditional

events or conditional events) or a remote entity (conditional events

only), the thread acquires a per-entity lock and appends the event

to an unordered per-entity event list. Now, the thread determines

whether the event can be executed in the current synchronization

window. One of three possible situations is encountered:

(1) The event’s timestamp lies within the current window and

past the last state change of the destination entity. In this case,

the current entity state is saved, and the event is executed.

(2) The event lies within the current window, but the entity state

has already been changed by at least one event with a larger

timestamp. To avoid the need for antimessages, any such

previously executed events and any of their effects must be

excluded from the current window. Hence, the window’s

upper bound is reduced to exclude all events with larger

timestamps than the current event. Subsequently, the entity

is rolled back to the earliest state prior to the current event’s

timestamp, and the event is executed.

(3) The event’s timestamp lies beyond the current window. Then,

the event is not executed.

Algorithm 2 Entity locking and update of the window bound when

attempting to execute an event.

1 function entity::try_execute(event):
2 entity.(lock)
3 entity.event_list.append(event)
4

5 # Upper window bound has decreased enough to exclude the event
6 if event.ts ≥ upper_bound:
7 entity.unlock()
8 return
9

10 # The event is a straggler
11 if event.ts < entity.latest_change_timestamp:
12 displaced_state = entity.earliest_state_after(event.ts)
13 atomically_set(upper_bound = min(upper_bound, displaced_state.ts))
14 entity.state = entity.latest_state_before(event.ts) # Rollback
15 entity.execute(ev)
16 entity.unlock()
17 return
18

19 entity.save_state()
20 entity.execute(ev)
21 entity.unlock()

In all cases, the entity is subsequently unlocked. The execute

phase terminates once none of the threads hold any unconditional

or conditional events earlier than the window bound.

In the commit phase, each thread visits each local entity with

a non-empty event list, i.e., each entity subject to tentative state

changes during the execute phase. If necessary, the entity is rolled

back to the latest state earlier than the final window bound. Given

the final window bound, the thread identifies those of the entity’s

events that have become unconditional. These events are certain

to occur in the future but cannot be committed during the current

window. This holds true for an event if it has been created earlier

than the window bound yet holds a timestamp at or beyond the

window bound. All other events in the entities’ lists can be dis-

carded as they have either already been committed as part of the

entity state, will never occur, or will later be newly created as a

consequence of an event from the u-event lists. Since the commit

phase operates only on local entities and the thread-local u-event

list, each thread carries out this phase independently.

4 EVALUATION
The evaluation of our implementation of Window Racer aims to

answer three research questions:

• How does Window Racer’s performance compare to an estab-
lished optimistic simulator based on Time Warp?

• How do Window Racer’s main algorithmic features contribute
to its performance?

• CanWindow Racer provide substantial speedup for simulations
of bio-chemical reaction networks?

Our implementation of Window Racer was created from scratch

using C++ and Linux pthreads. For random number generation, we

employ the Xoroshiro128** generator [5]. The speedup measure-

ments using PHold rely on our own C++ implementation as a base-

line, which we found to deliver higher performance for this model

than the sequential execution modes of ROOT-Sim and ROSS [6].

Themeasurementswere carried out on a singlemachine equipped

with a 16-core AMD Ryzen 9 7950X processor running Debian

GNU/Linux 11. Where not otherwise specified, the parallel simula-

tion runs were executed using the full 32 logical threads offered by

the processor, which we observed to typically generate the highest

performance in large model configurations. Frequency scaling on

the operating system level was disabled, i.e., the CPU ran at least

at its regular base frequency of 4.5 GHz, with a maximum boost

frequency of 5.7 GHz.

The experiments with bio-chemical reaction networks were ex-

ecuted on a dual-socket system equipped with two 16-core Intel

Xeon E5-2683 v4 CPUs running Ubuntu 22.04.1 LTS.

In Window Racer, each round’s initial window size 𝜏0 (cf. Sec-

tion 3) is set based on the final window size observed in the pre-

vious synchronization round, multiplied by a constant factor of

100 chosen arbitrarily. We found that the performance is affected

only marginally even when decreasing or increasing this tuning

parameter by an order of magnitude.

In the performance plots, each measurement represents an aver-

age of three runs.



4.1 Synthetic Benchmarks
A basic experiment setup using the synthetic benchmark model

PHold [16] would configure the desired number of entities and

initialize each entity with a fixed number of initial events. However,

the simulators may achieve varying performance when aggregating

entities to different degrees by forming groups of entities considered

jointly, which reduces the overhead compared to maintaining per-

entity event lists. On the other hand, excessive aggregation can

limit the exploitable concurrency and increase the probability and

cost of rollbacks. Hence, we vary the aggregation level for ROOT-

Sim, reporting the best-performing configuration. In PHold, an

aggregation of entities by a factor of two is equivalent to halving

the number of entities while keeping the overall number of events

in the system constant. We account for the increase in state size

through aggregation by allocating memory corresponding to one

pseudo-random number generator state of 16 bytes per entity.

In our experiments, the destination entities for events are drawn

uniformly at random while excluding the current entity, i.e., the

proportion of remote events is set to 1. In addition to events delayed

randomly according to a exponential distribution as in traditional

PHold, we configure the ratio of events scheduled with near-zero

delay. Given the current event’s timestamp 𝑡 , these 𝜖-delay events

are generated with the closest future timestamp 𝑡 + 𝜖 representable
as a double-precision floating point number. The choice to include

𝜖-delay events rather than zero-delay events was made to focus our

evaluation on the synchronization performance in the presence of

tightly coupled transitions rather than the handling of simultaneous

events, e.g., via forms of superdense time [33].

Figure 3 shows the measurement results when varying the over-

all number of events and the ratio of 𝜖-delay events to exponential-

delay events. For ROOT-Sim, we varied the aggregation level for

each model configuration to obtain 2
8, 210, 212, . . . , 224 entities and

show results for the best-performing aggregation level. Since we

found Window Racer’s event rate to almost always be highest with-

out aggregation, we only show results with aggregation disabled.

In the speedup results of Figure 3c, we observe that in many

configurations, ROOT-Sim’s best aggregation level outperformed

Window Racer without aggregation. However, in model configu-

rations with large populations and large ratios of 𝜖-delay events,

Window Racer exhibits better performance. This is consistent with

an intuition of the algorithmic differences between the two simu-

lators: with frequent 𝜖-delay events, PEs in Time Warp can rarely

advancewithout subsequent rollbacks, whichmay cascade.Window

Racer’s synchronous and fine-grained mode of execution results in

less frequent and less costly rollbacks.

We now turn to the dependence of ROOT-Sim’s performance on

the aggregation level. Figure 4 showsWindow Racer’s speedup over

ROOT-Sim depending on the aggregation level for four model con-

figurations. We observe that ROOT-Sim’s performance depends

strongly on the aggregation level, with optimal sizes of entity

groups ranging from 1 to 256 in these examples. These results

show that an unfavorable choice can degrade the performance im-

mensely, suggesting a need for model-specific configuration by

the user or runtime adaptations. Window Racer achieves its best

performance without aggregation and thus does not require this

type of configuration.
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(a) ROOT-Sim using the best-performing aggregation level.
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(b) Window Racer without aggregation.
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(c) Speedup of Window Racer over ROOT-Sim. Window Racer
outperforms ROOT-Sim with high 𝝐-delay ratios and large popu-
lations.

Figure 3: Comparing Window Racer and ROOT-Sim in the
adapted PHold benchmark, varying the overall number of
events and the ratio of 𝝐-delay to exponential-delay events.
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Figure 4: Speedup attained by Window Racer over ROOT-
Sim with different aggregation levels. Each curve shows one
PHold configuration defined by the population and the ratio
of 𝝐-delay to exponential-delay events. ROOT-Sim’s perfor-
mance depends severely on the choice of a suitable aggrega-
tion level, which varies with the model configuration.

Figure 5 shows the speedup achieved by Window Racer over

sequential simulations using the same code base. We note that

the sequential implementation employs an important optimization:

any newly generated 𝜖-delay event is executed immediately, i.e.,

without ever being inserted in an event list. For this reason, the

sequential implementation performs particularly well with high

ratios of 𝜖-delay events. The results show that in a traditional PHold

configuration, in which events are not associated with any com-

putations apart from random number generation to determine the

destination entity and time, the sequential simulations outperform

Window Racer for model configurations with small populations or

high 𝜖-delay event ratios. In other cases, Window Racer achieved

a speedup of up to 6.2. Since models used in real-world studies

carry out non-zero computational work within events, we also

show results with an artificial compute time of 1 𝜇s per event. This

low amount of computational load is sufficient for Window Racer

to outperform the sequential simulator in almost all cases, with a

maximum speedup of about 13.

To study the differences in the performance between the different

simulators more closely, we profiled PHold configuration with a

population of 2
24

and a ratio of 𝜖-to-exponential events of 64:1. For

this model configuration, all simulators achieved similar commit

rates between 8 and 9 million events per second. We consider three

metrics: the Time Warp efficiency is the number of committed

events divided by the number of events executed in total. The

CPU utilization is computed as the process’ user and kernel CPU

time divided by the wall-clock execution time. Finally, parallel and

distributed simulation algorithms can also differ in their energy

consumption [14]. We report the processor’s self-reported estimates

in Joules obtained via the RAPL interface [9]. Table 1 shows the

profiling results. The results follow the intuition on the different

simulators: the sequential baseline utilizes only one of the CPU’s

hardware threads and completes the simulation using the lowest

amount of energy. Comparing the parallel simulators, we see that

Window Racer’s more cautious form of speculation leads to higher
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(a) No compute time per event.
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(b) Compute time 1 𝝁s.

Figure 5: Speedup attained by Window Racer over a sequen-
tial execution with compute times of 0 and 1 𝝁s per event.
1 𝝁s of compute time per event is sufficient for substantial
speedup in almost all model configurations.

Efficiency CPU Utilization Energy [J]

Sequential 100.0% 3.1% 501

ROOT-Sim 45.2% 95.8% 4194

Window Racer 74.4% 53.0% 3541

Table 1: Efficiency, utilization, and energy measurements
with a population of 224 and an 𝝐-delay event ratio of 64:1.

efficiency compared to ROOT-Sim. Since threads can be stalled

at barriers, Window Racer runs at a lower CPU utilization than

ROOT-Sim’s near full utilization and achieves a moderately lower

energy consumption.
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(a) Window Racer’s speedup over Minimum Time Buckets (MTB).
Model configurations with 𝝐-delay events are omitted since MTB’s
performance degraded to miniscule event rates.
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(b) Window Racer’s speedup over S3A. Window Racer is faster for
small and medium populations and with frequent 𝝐-delay events.

Figure 6: Ablation study:Window Racer’s speedup over other
algorithms executed using the same code base.

4.2 Ablation Study
We now investigate the determinants of Window Racer’s perfor-

mance. This is achieved by disabling or restricting its key algo-

rithmic features so that Window Racer is reduced to two existing

algorithms, while still relying on the same implementation.

We revisit the Window Racer’s key features as previously dis-

cussed in Section 3:

(1) Execution of newly generated events regardless of thread

assignment.

(2) Rollbacks and identification of window bound based on

entity-level straggler events.

Disabling (1) yields theMinimumTime Buckets (MTB) algorithm,

a shared-memory variant of the classical Breathing Time Buckets

algorithm. In this configuration, any newly scheduled event target-

ing a remote thread is excluded from the current synchronization

window, postponing its execution to the next round.

A behavior in line with the S
3
A algorithm [2] is achieved as

follows: firstly, we restrict (1) so that only new 𝜖-delay events

are immediately executed across thread boundaries, i.e., newly

scheduled remote events with larger delay are postponed to the

next window. Secondly, the state saving history for each entity used

in (2) is limited to a single entry. This configuration follows S
3
A’s

approach of determining synchronization windows that include at

most one state update for each entity.

Figure 6 shows the results of the ablation study. For MTB, sched-

uling an 𝜖-delay event targeting a remote thread truncates the syn-

chronization window at the current event’s timestamp. We found

that in these model configurations, an average of little more than

one event was committed per synchronization round, making MTB

unsuitable for models with 𝜖-delay events. Since the commit rate

degraded to only about 30 000 events per second independently of

the population size, we exclude these results from the plot. However,

without 𝜖-delay events, MTB was able to somewhat outperform

Window Racer for populations of 2
20

and beyond. In these model

configurations, the simulation offers sufficient parallelism so that

Window Racer’s fine-grained thread interactions provide no further

benefit. On the other hand, for smaller populations, Window Racer

achieved a speedup of up to 4.7 over MTB.

S
3
A was competitive across a wider range of model configura-

tions, somewhat outperforming Window Racer for combinations

of large populations with low 𝜖-delay event ratios. The trend of the

results is similar to MTB in that with sufficiently large populations,

Window Racer’s immediate execution of event chains across thread

boundaries is not necessary to extract sufficient parallelism. Win-

dow Racer again provides performance improvements particularly

for smaller populations, with the highest speedup of 6.4 with a

population of 2
16

and without 𝜖-delay events.

Overall, we see that Window Racer is more efficient in its ex-

traction of parallelism than the other synchronous algorithms, ex-

tending the range of gainfully parallelizable simulations towards

smaller scenarios.

4.3 Bio-Chemical Reaction Networks
In the following, we study Window Racer’s performance when sim-

ulating models of spatial bio-chemical reaction networks using the

Next Reaction Method (cf. Section 2.3). In our implementation, each

simulation entity represents one type of reaction. We distinguish

two types of events: the first type corresponds to a reaction firing,

representing a state transition. The second type instantaneously

notifies other entities of a firing, signaling the need to update their

tentative firing times. This explicit signaling is used to avoid state

sharing among entities. Instead, each entity maintains a copy of the

relevant state, typically comprising the integer-valued population

of one or two species.

We employ a specialized u-event list (cf. Section 3) that per-

mits rescheduling, i.e., when a firing is scheduled and one has

already been scheduled for the same reaction type, the original

firing is replaced in the u-event list. Furthermore, we reduce the

number of rescheduling operations by immediately discarding fir-

ings known to be outdated according to a per-reaction attribute

that holds the next firing time. Using this approach, the commit

phase (re)schedules at most one operation per reaction type.

As performance baselines, we employ a pool of state-of-the-art

and custom sequential simulators. The BioSimulators interface [41]

provides a standardized means to execute models using various dif-

ferent simulators. We carried out our measurements using the estab-

lished simulators BioNetGen [12], libroadrunner [43], pSSAlib [34],
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Figure 7: Illustration of the bio-chemical reaction network
model. The dashed grid represents the subvolumes, circles
and arrows indicate species and reactions. Dotted arrows
signify diffusion transitions among subvolumes.
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ML-Rules [31], COPASI [23] and GillesPy [1]. Furthermore, we im-

plemented two custom minimalist sequential simulators using the

Logarithmic Direct Method [28] and the Next Reaction Method

with data structures optimized for large systems. The latter two

were found to perform best among the sequential simulators, likely

due to their restricted functionality and scope as well as highly

optimized data structures.

Our performance measurements were carried out for the syn-

thetic spatial reaction network illustrated in Figure 7. In the model,

each subvolume contains five types of species that cyclically trans-

form into one another (𝑆1 → 𝑆2, 𝑆2 → 𝑆3, . . .). The first species

type in each subvolume can diffuse to the neighboring rectangular
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Figure 9: Window Racer’s performance for large reaction net-
works with two different coupling levels among subvolumes.
The horizontal lines indicate the two fastest sequential sim-
ulators, whose performance is independent of the coupling.

areas. In our performance results, we report reaction firings per sec-

ond wall-clock time. Each firing entails about 8.5 events on average,

comprised of the firing event itself and the subsequent notifications

for the dependent reaction types.

The first experiment uses a reaction network with a low degree

of coupling among subvolumes, resulting in only one in five hun-

dred events crossing the subvolume boundaries. The results are

shown in Figure 8. We observe that Window Racer outperforms the

sequential simulators for larger numbers of subvolumes. Beyond

2 000 subvolumes, speedup is attained over all sequential simulators

with 16 and 32 threads.

In the second experiment, the model is configured with a much

stronger degree of coupling, diffusion occurring at either the same

or double the rate of the regular reactions, which is more representa-

tive of typical spatial bio-chemical network models [29]. The results

are shown in Figure 9. In these configurations, significantly larger

networks are required to achieve speedup over the sequential case.

Furthermore, the degree of coupling has a pronounced effect on the

performance. Increasing the number of threads steadily increases

performance, indicating that Window Racer could scale beyond the

available 32 threads. For the largest reaction network, we observed

a maximum speedup of 8 over the fastest sequential simulator.

Overall, we observe that Window Racer is able to substantially

outperform sequential simulators for spatial bio-chemical reaction

networks given sufficiently large network sizes. The benefits seen

in practical studies will depend on the need for such extensive

scenarios and on the degree of coupling in the modeled system.

5 CONCLUSIONS AND FUTUREWORK
We presented Window Racer, a synchronous risk-free optimistic

synchronization algorithm for discrete-event simulations on shared-

memory systems. Window Racer is able to extract speedup from

models of tightly coupled systems with global and unpredictable

entity interactions. Its defining characteristic and main driver of its

performance benefits is the immediate execution of event chains

without regard for the events’ thread assignment, which is achieved



through fine-grained locking and atomic operations. In measure-

ments using the PHold benchmark model, Window Racer demon-

strated particular benefits compared to an established simulator

based on Time Warp in model configurations with large numbers

of entities and with frequent near-instantaneous interactions. Com-

pared to other synchronous optimistic algorithms, Window Racer

is able to extract speedup from smaller scenarios. We also showed

that Window Racer accelerates spatial simulations of bio-chemical

reaction networks, a challenging class of models for parallelization.

In future work, models with uneven load distribution could be

better supported by exploiting Window Racer’s loose binding of en-

tities to threads. This could take the form of a gradual repartitioning

inwhich already scheduled events are still executed according to the

previous entity assignment, or of work stealing whenever threads

become idle. To combine the benefits of Window Racer’s cautious

form of speculative execution with the more aggressive Time Warp,

we are currently exploring a joint synchronous/asynchronous sim-

ulation approach [39]. Finally, similarly to the S
3
A algorithm [3],

Window Racer’s synchronous execution scheme may lend itself

to further acceleration via many-core processors such as graphics

processing units.
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