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ABSTRACT
Increasing effort is put into the development of methods for learning mechanistic models from data. This task entails
not only the accurate estimation of parameters, but also a suitable model structure. Recent work on the discovery of
dynamical systems formulates this problem as a linear equation system. Here, we explore several simulation-based
optimization approaches, which allow much greater freedom in the objective formulation and weaker conditions on the
available data. We show that even for relatively small stochastic population models, simultaneous estimation of param-
eters and structure poses major challenges for optimization procedures. Particularly, we investigate the application of
the local stochastic gradient descent method, commonly used for training machine learning models. We demonstrate
accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically
increases the difficulty. We give an outlook on how this challenge can be overcome.

Keywords automatic model generation, gradient descent, stochastic simulation algorithm, discrete-event simulation, differen-
tiable simulation

1 Introduction

Statistical machine learning methods provide exciting ad-
vances in automatically learning (statistical) models from data.
Whereas these models provide impressive predictive abilities
[27], their black-box nature does not directly contribute to un-
derstanding the reference system’s mechanics and impedes pre-
cise manual refinement. This motivated the development of
methods for automatically deriving mechanistic models from
data [25, 4, 15, 5]. With these, manual, hypothesis-driven
knowledge discovery can increasingly be augmented by auto-
matic, data-driven approaches [20]. Such an automatic model-
ing approach is useful when (parts of) the mechanisms of the
reference system are unknown, but there are measurements of
its behavior over time. Learning mechanistic models from data
then entails not only parameter estimation but also the simulta-
neous identification of a suitable model structure.

In this paper, we study the case of learning stochastic,
discrete-event models with an underlying continuous represen-
tation of time from time-series snapshots of some traversed
state distributions by gradient descent. Specifically, we focus
on Markovian population models that are expressed as reaction
systems. Our contributions are as follows:
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• Section 5 provides different possible formulations of the
model learning problem.

• Section 5.1 shows how reparametrization enables param-
eter estimation over different orders of magnitude.

• Section 6 provides first results on the simultaneous learn-
ing of structure and parameters by gradient descent. It dis-
cusses the challenges and opportunities of the approach.

We briefly introduce the reaction system formalism in Section 2
and stochastic gradient estimation in Section 3. Section 4 re-
views related work. After presenting our methods in Section 5
as outlined above, we conclude in Section 6.

2 Population-based Modeling
In the biology and chemistry domains, reaction systems are a
commonly used modeling formalism [13]. They describe sys-
tem dynamics in terms of the consumption and production of
entities at certain rates. Their underlying assumption is that en-
tities can be grouped into homogeneous populations of species
(or molecules) Si, i ∈ {1, . . . , ns} that reside in a well-stirred
medium. A reaction takes the form

Ri :

nS∑
j=1

cijSj
ri−→

2nS∑
j=nS+1

cijSj−nS

with C ∈ NnR×2nS being a matrix of coefficients (“model
structure”), r the vector of rate constants (“parameters”), and
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nR, nS the number of reactions and species in the system, re-
spectively. A reaction system can be completely characterized
by providing C and r. A vector of species counts gives the
starting conditions of a reaction system, i.e., Sinit.

As a running example, consider the well-studied SIR model
of disease spread, comprising three species representing popu-
lations of susceptible, infected and recovered individuals:

R0 : 1S + 1I
0.02−−→ 2I

R1 : 1I
5.00−−→ 1R

,Csir =

(
1 1 0 0 2 0
0 1 0 0 0 1

)
This reaction system has two reactions with coefficient ma-
trix Csir. Here, the parameters r are chosen as (0.02, 5).
The first reaction describes the infection of a susceptible in-
dividual and the second an individual’s recovery. Note that
species participating with coefficient 0 are omitted. We will
use Sinit = (1980, 20, 0) as initial condition.

Population-based models defined as reaction systems can be
simulated either through numerical integration with ordinary
differential equation (ODE) semantics [18, 11] or the stochastic
simulation algorithm (SSA) [9] with continuous-time Markov
chain (CTMC) semantics. In many cases, stochastic effects
cannot be ignored [30, 23]. Therefore, instead of focusing
on the mean continuous dynamics, our approach will take the
stochasticity of the system into account.

The vector of species counts S fully represents the state of
the model at the current time t. We make the common as-
sumption that the transition probabilities are governed by the
probability of two entities in the well-stirred medium reacting
and the transitions of the CTMC are governed by the stochas-
tic mass action law [18, 9]. The effective rate of a reaction in
a given state is called its propensity α. For example, for the
SIR model, we have α0 = 0.02 ·S · I , i.e., the more susceptible
and infected individuals there are, the likelier an infection event
is to happen. Note that other functions may be used to calcu-
late the propensity depending on the modeled system. Another
common assumption is that the probability of more than two
species colliding is so low that any reaction with three or more
reactants can be split into multiple reactions with two or fewer
reactants. Thus, we only consider binary reactions with at most
two species on the left-hand side of a reaction. Despite making
these assumptions here for simplicity, our approach is theoreti-
cally able to accommodate any dependence of the propensities
on the state as well as n-ary reactions.

As a simulator, we use Gillespie’s direct method [9], which
takes sample trajectories through the CTMC defined by C and
r using a Monte Carlo strategy. At each event, t is advanced ac-
cording to an exponential distribution over the sum of propen-
sities αi. The state is updated by choosing from a categori-
cal distribution over the reactions, subtracting the reactants and
adding the products to the current state. With the number of
sample trajectories tending to infinity, the likelihood function
of the model is recovered, i.e., the probability distribution over
states and time given r.

3 Stochastic Gradient Estimation
When there is a closed form of the likelihood, its gradient is an
effective tool for optimization. However, the closed form is in-
tractable for many real-world systems, necessitating Gillespie’s

SSA. Determining the gradient of this algorithm is not straight-
forward. The well-established method of automatic differentia-
tion (AD) provides performant means to calculate the gradient
of algorithms at runtime [21]. However, this gradient cannot
account for the jumps (discontinuities) inherent to the individ-
ual SSA trajectories. So even with the mean over trajectories
being a smooth function, AD is not useful for optimization.

Thus, we resort to recent advances in estimating the gradi-
ent of an alternative objective function, which is smoothed over
jumps [17]. We use a finite-differences estimator with stochas-
tic step-size, as proposed in [29] (Chapter 3.4) and further ana-
lyzed in [24]:

∇f(θ) ≈ 1

N

N∑
n=1

f(θ + σu)− f(θ)

σ
u (1)

where θ is the parameter vector, σ is a smoothing factor that
determines the smoothing applied to the objective f and u ∼
N (0, I) is a vector of i.i.d. normal variates with mean 0 and
variance 1. In contrast to finite differences, which need at least
one sample per dimension of θ, through simultaneous pertur-
bation this estimator requires only two samples for estimating
the full gradient. For the number of samples n approaching
infinity, the estimate converges to the gradient of a smoothed
version of f [24]. Further, it can handle jumps and noise in the
objective through the smoothing controlled by σ.

4 Related Work

The idea of learning mechanistic models or automating the
modeling process has inspired various research in many ap-
plication fields [16, 31, 3]. Related to our work, two major
approaches can be distinguished: genetic programming, which
for the first time provided strategic means of searching in the
space of programs or models [16, 25], and sparse regression,
which enables the identification of short yet accurate symbolic
expressions, such as differential equations [8, 4]. Recently,
these approaches have also been combined, e.g., to discover
multibody physics systems [3].

Specifically in the case of biochemical reaction models, [25]
proposed genetic programming to identify reaction systems
with ODE semantics. Here, a population of candidate struc-
tures is evolved, and evolutionary operators are applied based
on the candidates’ fitness. To accurately rank a structure, its fit-
ness is determined by the best solution found by particle swarm
optimization and numerical integration. The authors of [22]
propose a statistical search algorithm called Reactmine to in-
fer chemical reactions with ODE semantics. In [15], the sparse
identification of non-linear dynamics (SINDy) [4] is adapted
to the stochastic semantics (cf. Section 2). This is achieved
by relying on the moment-equations of the chemical master
equation, an ODE system describing the time-evolution of the
Markov chain’s moments. A two-step regression approach,
called Reactionet LASSO, is employed to achieve robustness
against heteroscedastic, noisy measurements and reaction con-
stants of different magnitudes.

A recent publication adjusts the SINDy approach to accom-
modate coupled differential equations such as those resulting
from the ODE semantics of reaction networks [5]; [12] also
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brings SINDy to the case of biochemical systems with mass-
action kinetics and account for uncertainty.

In contrast to the above, here we aim at a simulation-based
optimization approach, which also allows, e.g., the straightfor-
ward inclusion of unmeasured species, arbitrary kinetics, and
accounting for probability distributions (instead of their mo-
ments). Further, our proposed methods do not rely on numer-
ical differentiation of the time-series data, which can be inac-
curate in the presence of noise and large or uneven sampling
intervals.

The use of gradient descent for parameter estimation of sim-
ulation models also saw great interest recently [1, 6], including
biochemical reaction systems [32]. In [33], gradient descent is
used to enable Bayesian inference over general ODE models.

5 Learning Reaction Systems with Gradient
Descent

Consider a reaction system R with coefficients C, stochastic
rate constants r ∈ Rn and initial populations Sinit. Assuming
the structure C of the model is known, we can simulate tra-
jectories over states St, t ≥ 0 from the CTMC, defined by C
and a certain parametrization r. Typically, we want the trajec-
tories produced by R to resemble the behavior of a reference
system. To achieve this, suitable parameter values have to be
estimated from collected time-series data: Given measurements
Dt at discrete times t ∈ {1, . . . , n}, the goal is to maximize the
likelihood L(D|r) or some other measure of goodness of fit.
Determining the parameters r that maximize the likelihood is
also referred to as the inverse problem, since a “forward” sim-
ulation provides a sample from L for a given r.

Here, our goal is to simultaneously infer the structure of the
model, i.e., we try to find r and C, such that L(D|C, r) is
maximal. Obviously, this is a much harder task than just es-
timating parameters, as the degrees of freedom in the inverse
problem are drastically increased. Further, even when taking
the mean over SSA trajectories, the response surface may now
exhibit jumps, introduced by the discrete entries in C. In fact,
we can formulate the problem with varying degrees of smooth-
ness (prior to considering a smoothed objective, cf. Section 3).
The following formulations are adapted to the SIR model (cf.
Section 2), which we later use for evaluation.

Library of Reactions. Our first problem formulation is in-
spired by the use of reaction libraries in [5, 15]. This approach
can directly be translated to a simulation-based optimization
problem: the reaction system to optimize comprises (a selec-
tion of) all reactions for a given number of species. The task is
to adjust r, where reactions i with ri below a certain thresh-
old are dropped from the final model. Our library consists
of the 36 binary reactions that abide by the conservation law
S + I + R = 2000. This problem is completely smooth in all
dimensions.

Coefficient Steps. In the second problem formulation, we
fix the number of reactions to two and try to adjust C with
cij ∈ {0, 1, 2} and r directly, yielding a 14-dimensional prob-
lem. This problem is non-smooth in the coefficient dimensions.

Reaction Steps. In the third formulation, we again work with
a library of reactions but introduce a (continuous) ranking vec-
tor of the same dimensionality as r. In each simulation run,

only the two reactions with the highest rank are considered, en-
forcing a certain model size. The task is then to adjust the rank-
ing together with the two rate parameters, one for each reaction
in the top-two.

Library of Systems. The final formulation, which we adopt
for didactic purposes, is a brute-force approach. It optimizes
the 1260 rates of all possible combinations of two reactions
from our library of 36 simultaneously. With one optimization
run per model being much more performant, this example is
designed to showcase the gradient estimator’s ability to steer
the rate adjustment across large numbers of structures.

Generally, more than one reaction system can produce tra-
jectories from the distribution in D [7]. It is often hard to
choose the “right” system automatically, and the choice must
be left to domain experts [12]. However, certain criteria can
constrain the optimization process to desirable solutions, such
as parsimony (choosing a low number of reactions producing a
good fit) and background/prior knowledge (such as number of
species, conservation laws, or even known reactions). Some of
these constraints may result in an NP-hard problem for which
the best-known solution is brute force [10]. This can be over-
come, e.g., by regularization (like in SINDy) and relaxation.

As we will demonstrate on the example of the problems
above, there is a tradeoff between the ability to strongly enforce
these constraints and the smoothness of the objective function,
which in turn determines the difficulty of the optimization task.

5.1 Reparametrization
In both parameter estimation and structure identification, the
scale of the parameters poses a problem: depending on the
model, the rate constants can cover multiple orders of mag-
nitude. This is detrimental for many optimization algorithms,
as an appropriate step size depends on the dimension of r.
This has been tackled in [15] by a separate optimization run
to determine the orders of magnitude. The authors of [26] use
hand-crafted and learned dilation functions. Here, we use a
simple logarithmic reparametrization, which decreases the dy-
namic range of the parameters:

r′ = exp(ar+ c)− exp(c), with a =
1

4
and c = −20

Optimizing in this space means that a step in r between, e.g.,
0.1 and 0.2 is the same as between 1 and 2. The specific shift-
ing and scaling ensure (1) that the value ri = 0 is mapped to
0 and (2) that the values in a sensible range (around 10−4 to
102) are sufficiently spread. This way, the sensitivity of the re-
sponse wrt. changes in r is decreased, aiding the optimization

0.0 0.5 1.0
r0

0

10

r 1

0.0 0.1 1.0
r0

0

1

12

Figure 1: The SIR model’s response surface (left) and the effect
of reparametrization (right). A darker color equals a lower loss
and the star marks the optimum.
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Figure 2: Convergence of gradient descent on the four problems (top) and chosen inferred models (bottom). Progress on the
unsmoothed objective, the optimal solution has a loss of about 0.01 (depending on the inferred system’s stochasticity). The
reaction system shown for Library of Reactions comprises 17 reactions above the threshold 10−4, but only the top 3 are shown
here.

(cf. Figure 1). Specifically, in the case of our stochastic gra-
dient estimator, this allows us to set a single smoothing factor
σ for all dimensions, which would otherwise lead to an overly
smoothed objective and occlude narrow minima.

5.2 Evaluation Setup
To identify the challenges and opportunities of gradient descent
in the context of a stochastic simulation-based model inference,
we evaluate the convergence of our four problem formulations
on recovering the SIR model as parametrized in Section 2.
Our time-series reference data is generated by simulating the
model until t = 1 and collecting state snapshots at 100 dis-
crete, equidistant simulation times (although we generally re-
quire neither equidistance nor completeness). For optimization,
we employ the stochastic gradient estimator introduced in Sec-
tion 3 and combine it with the Adam gradient descent optimizer
[14]. For each problem, we manually determined hyperparam-
eters (sample size n, smoothing factor σ, and learning rate η)
that achieved good results. In the order of the problems from
Section 5, these are (100, 0.2, 1), (1000, 1, 1), (100, 0.2, 0.1),
and (100, 0.2, 0.5). Initial parameters are drawn from problem-
specific uniform distributions. Our simple demonstration aims
to minimize the root mean squared error (RMSE) between the
reference and the simulation time-series, which is run for 20
replications. Note that it is easily possible to change this objec-
tive, e.g., to minimizing Wasserstein distances on distribution
estimates [28]. We repeat the optimization process 10 times to
account for the stochasticity.

6 Results and Discussion
The evaluation results are provided in Figure 2, which shows
the mean convergence behavior over gradient descent steps on
each problem, as well as the final model inferred by a cho-
sen optimization run. For the Brute Force problem, the lowest
RMSE of all structures is shown.

The Library of Reactions formulation yields a very precise
fit to the input data but lacks parsimony. Convergence is at-
tained fast, as the objective is smooth. Here, a parsimony-
encouraging initialization, as with the horseshoe prior for
Bayesian regression may prove beneficial [12], albeit introduc-
ing bias towards certain solutions.

On Coefficient Steps, on the other hand, the smoothed gra-
dient descent struggles to converge to a good solution. Our
further experiments showed that convergence to very good so-
lutions is possible, but strongly depends on the initialization.
This hints at the existence of hard-to-escape local minima.

In Reaction Steps, the smoothed gradient should be able
to capture the effects of possible alternate rankings, and we
observe good initial progress toward a parsimonious solution.
Still, the decoupling of rates and structure seems to be chal-
lenging to overcome. When the ranking vector tends to a lo-
cal minimum, means of escaping it by (partially) shuffling the
current ranking could help to identify better solutions in other
parts of the search space. However, in preliminary experiments
of this sort, we observed inferior results.

Being completely smooth, the brute force Library of Systems
approach is similar in convergence to the Library of Reactions.
In contrast to the latter, it is able to recover the parsimonious
original model. This indicates the ability of gradient descent
to optimize a vast number of reaction systems at a time. Since
the combinatorial explosion puts larger reaction systems out of
reach, the main missing building block for this approach is a
goal-driven exploration of structures.

Our initial results demonstrate a tradeoff between parsi-
mony, goodness of fit and scalability. This is the result of differ-
ent response surfaces and their amenability to gradient descent.

In all cases, the scaling of rate constants poses a problem,
which can be dealt with by reparametrization (cf. Section 5.1).
Whereas the rate constant space clearly places solutions of sim-
ilar quality close to each other (cf. Figure 1), it is generally
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unclear which steps in the structure dimension (e.g., on the co-
efficients in C) lead to lower loss. The simultaneous adjust-
ment of both C and r further complicates solutions that try to
(smoothly) enforce a certain model size. A major step towards
better convergence would thus be a combined reparametriza-
tion of C and r, which enables a goal-driven exploration of
structures. Clearly, such a reparametrization must be approx-
imate, and its existence is unclear, demanding further inves-
tigation. Promisingly, in the related case of learning (impera-
tive) programs, first steps have been taken in this direction [19].
Besides parsimony, identifyability could be facilitated by con-
straining solutions on background knowledge, as for example
derived from a conceptual model in a simulation study.

Beyond considering the challenges outlined above, future
work may explore the application of other smooth gradient es-
timation schemes based on automatic differentiation, such as
StochasticAD [2] or DiscoGrad [17]. Finally, the full potential
of the simulation-based approach needs to be explored, e.g.,
by considering unmeasured variables and alternative loss func-
tions.
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