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Abstract—A discrete-event simulation (DES) involves the ex-
ecution of a sequence of event handlers dynamically scheduled
at runtime. As a consequence, a priori knowledge of the control
flow of the overall simulation program is limited. In particular,
powerful optimizations supported by modern compilers can only
be applied on the scope of individual event handlers, which
frequently involve only a few lines of code. We propose a method
that extends the scope for compiler optimizations in discrete-event
simulations by generating batches of multiple events that are
subjected to compiler optimizations as contiguous procedures.
A runtime mechanism executes suitable batches at negligible
overhead. Our method does not require any compiler extensions
and introduces only minor additional effort during model devel-
opment. The feasibility and potential performance gains of the
approach are illustrated on the example of an idealized proof-of-
concept model. We believe that the applicability of the approach
extends to general event-driven programs.

I. INTRODUCTION

In discrete-event simulations (DES), events are executed one
after the other in the order of their time stamps. Due to the
stochastic nature of most simulation models, the execution
order is not known a priori. In particular, the execution order
is not available during compilation. Modern compilers for
languages such as C++ support powerful optimizations to
reduce execution times and executable file sizes [1] such as
removal of redundant computations, instruction reordering to
improve branch prediction and hide memory access latencies,
or inline expansion of function calls to reduce call overheads.
Unfortunately, the unpredictable control flow of discrete-event
simulations limits the scope of such optimizations to individual
event handlers. As an example, consider a situation where an
event reverses the state changes performed by its preceding
event. Although the execution of the two events has no effect,
the situation cannot be detected by the compiler and this
unnecessary computation is performed in full.

In this paper, we propose a general method to extend the
scope for compiler optimizations in discrete-event simulations
implemented in C++ beyond individual events. The approach
can be applied both to sequential and parallel simulations.
Although our implementation relies on C++ templates, the
method only requires suitable metaprogramming facilities that
are available in a number of programming languages.
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Fig. 1. Overview of the proposed approach: during compilation, batches are
composed from registered event handlers. At runtime, batches are identified
in the set of pending events and executed as a unit.

The approach is illustrated in Figure 1. During compilation,
all combinations of event handlers (“batches”) up to a con-
figurable length are composed automatically using metapro-
gramming constructs. Each batch is a simple concatenation of
the code associated with the individual event handlers. The
benefit of the approach is that batches can be considered
for compiler optimizations as contiguous code fragments,
substantially improving the scope for optimizations. During
runtime, appropriate batches are selected and executed in place
of the original sequence of event handlers. The length of
the executed batches varies, since similarly to parallel and
distributed simulations [2], dependencies between events must
be respected. Model knowledge is applied to guarantee that
batches are executable without violating the correctness of the
simulation. We make our prototypical implementation of the
approach available to the community 1.

The remainder of the paper is organized as follows: in
Section II, we discuss related work. In Section III, we present a
method to compose event batches at compile time and a mech-
anism to execute suitable batches at runtime. In Section IV,
we evaluate the approach w.r.t. the effects on compilation
and runtime performance, as well as the impact on model
development. With Section V the results are summarized and
the paper is concluded.

1https://github.com/batched-DES/prototype
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II. RELATED WORK

Some previous works have considered events as batches to
reduce simulation runtimes. However, in contrast to our work,
the existing approaches have focused on parallelized simula-
tions and have not considered enabling compiler optimizations
across events.

In optimistically synchronized parallel and distributed sim-
ulation, a rollback mechanism is required to undo erroneous
event executions. Several algorithms have been proposed to
reduce the scale and overhead of rollbacks [2]. Zeng et
al. proposed an approach to roll back batches of events at
once. This is achieved by maintaining sufficient information
at each processor so that during a rollback, a correct state can
be achieved by rolling back a batch of events locally without
inter-processor communication [3].

In 2017, Gupta and Wilsey [4] performed experiments on
executing batches of events in optimistically synchronized
simulations using the framework Warped2 to decrease the
contention created by concurrent accesses to the shared data
structure holding future events. Comparing the performance
under different policies for executing events as batches, the
authors report a speedup of up to 2.5 over executing events
one after the other.

The idea of merging computations into a single step has
been explored in general HPC (“superblock technique” [5])
and in the context of computations on graphics cards (“thread
coarsening” [6] and “kernel fusion” [7]). In contrast to these
works, our approach addresses the challenges given by the
limited predictability of the order and dependencies among
computations in DES.

III. PROPOSED METHOD

In the following section we propose a method for batch
composition and scheduling. The main steps of the approach
are as follows:
• Enumeration and composition of all combinations of

event types up to a predefined length during compilation.
• Selection and execution of the correct batches during

runtime depending on the set of pending events without
violation of the causality constraint (non-decreasing time
stamp order of the executed events).

The batches of event handlers are composed during compi-
lation. The input for this process is the set of event handling
functions which are registered in an array by the modeler.
In Section III-A, a compile-time algorithm for the batch
composition is described. We developed an event scheduler
that maintains the execution order when executing batches
instead of single events. Events are extracted as long as it can
be guaranteed that the causality constraint is not violated. Sub-
sequently, the corresponding batch is selected and executed.
In Section III-B, the scheduling method is presented.

The event batches are constructed during compilation
through compile-time metaprogramming using C++ tem-
plates. Metaprograms are programs that manipulate executable
code [8]. Originally, C++ templates were intended as a

mechanism for generic programming by allowing templated
functions to be instantiated for a specific data type during
compilation [9]. However, in 2003 Veldhuizen showed that
C++ templates are Turing complete [10].

A. Batch Enumeration and Composition

As mentioned above, an event batch is a concatenation of
n ∈ N event handlers. To be able to execute the composed
batches during runtime, the batches have to be identified
uniquely. Hence, a system is needed that constructs identi-
fiers based on the event types that contribute to a batch. In
this Subsection, we present an algorithm that enumerates all
possible batches up to a configurable length and that uses
number system transformation based on a variation of the
Horner scheme [11]. We have chosen this approach to achieve
a clean implementation and a scheme that can be efficiently
evaluated both during runtime (cf. Sec. III-B) and compile-
time.

The set of event handlers can be interpreted as the characters
of an alphabet Σ. The resulting formal language of all event
handler batches is L = Σ∗, where ∗ is the Kleene closure. For
instance, the Kleene closure for the alphabet Σ = {a, b} starts
with {ε, a, b, aa, ab, ...}, where ε is the empty string. Since
formal languages are recursively enumerable [12], a bijection
f can be found between N and L. If the cardinality |Σ| of Σ is
interpreted as the base of a number system, a word of Σ∗ is a
representation of a natural number in the system with base |Σ|.
The characters of the alphabet Σ are interpreted as digits of a
number system. However, if the first character a corresponds
to the digit 0, it has no effect on the batch identifiers (aba
will have the same id as ba). Hence, we introduce an explicit
character ν signifying “no event”. However, by including the
ν-event, redundant batches are generated. If Σ = {a}, it has
to be expanded to Σν = {ν, a}. If additionally n = 2, the
words of Σ∗ν with maximum length 2 are ν, a, νν, νa, aν, aa.
Obviously, the codes of the batches a, νa and aν are equivalent
and thus redundant (cf. Sec. IV). Let |Σν | be the number of
event handlers (including the ν-event) and n the maximum
batch length. Then B =

∑n
i=1 |Σν |i event batches exist.

We assume that during model development, function point-
ers to all event handlers have been added to a constant array.
Now, during compilation, all batch identifiers up to B are
enumerated by recursive evaluation of template functions. For
each enumerated identifier a template function is invoked that
transforms the identifier to the different event types and that
batches the corresponding event handling functions in the
correct execution order. Function pointers to the composed
batch handlers are stored in an array to enable the runtime
mechanism (cf. Sec. III-B) to address and execute batches at
runtime.

App. A lists the pseudocode for the meta program described
above.

B. Batch Selection and Execution

To maintain correct simulation results, a batch should only
be executed if the contained sequence of events cannot be
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affected by its execution. Here, as in conservatively synchro-
nized parallel and distributed simulations, we require model
knowledge to define a lookahead [2], i.e., a minimum delta
between an event’s execution and creation time stamps.

At runtime, our batch scheduler uses a dynamic lookahead
window. We assume that a lookahead value is associated with
each event type. Events are extracted one by one while their
execution time lies within the dynamic lookahead window.

In Fig. 2, the consideration of lookahead during batch
extraction is illustrated. We iterate over the future events and
compute the minimum of the sum of the events’ respective
time stamp and lookahead. Once an event’s time stamp is
larger than the current minimum, the batch extraction termi-
nates. In the figure, the batch e1e2e3 is executed. In effect, if
te is the execution time of event e and le is the lookahead of
e according to its type, we compute tmax = mine∈E(te + le)
where E is the set of future events up the configured maximum
batch length. Following Section III-A, the event type digits
contribute, depending on their position in the batch, to the
batch’s identifier which then is used to execute the before
composed batch. In addition to the lookahead window, the
number of events in a batch is limited by the configured
maximum batch length, which is a tuning parameter.

IV. EVALUATION

In the following, we demonstrate the feasibility of the
approach by showing successful cross-event compiler opti-
mization and the associated speedup for a synthetic simulation
model. Subsequently, we evaluate the increase in compile
times incurred by the batching process. Finally, we discuss the
deployability as well as limitations and potential improvements
of our approach.

A. Proof of Concept

We evaluate our approach using a synthetic simulation
model that performs redundant computations across events,
providing substantial opportunities for cross-event compiler
optimizations. The model is based on two event types: as
a computationally intensive event, the Increment event
performs a million iterations of sum += sum + 1 on the
global variable sum. The Set event sets the global sum
variable to the constant value 10. For simplicity, neither of
the event types schedules new events. However, our approach
poses no limitations on event scheduling at runtime. Since the
execution of a Set event after an Increment event renders
the computation of the for-loop obsolete, the compiler should

simulated time

e4

e1

e2

e3

tmax

Fig. 2. Dynamic lookahead window (vertical line): according to the next
events’ time stamps and lookaheads, tmax allows for the execution of a batch
comprised of e1e2e3.
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Fig. 3. Speedup by event batching for synthetic proof-of-concept model.

remove the loop from batches with this sequence of events
entirely.

A similar sequence of computations could be given in
a model of wireless communication: suppose a node in a
simulated network periodically broadcasts messages to nearby
receivers. The successful reception depends on whether the
receiver is in a power-saving state. If none of the nearby nodes
is ready to receive, the computations involved in the creation
of the message could be avoided entirely. If a sequence of
events in a batch makes it impossible for the results of the
message creation to be used, the compiler could remove the
message creation code.

The model was compiled with clang++ version 3.8.0 on
an Intel Core i5-6600K CPU @ 3.5GHz with 32GB
of main memory running Ubuntu 16.04.3.

For an examination of the generated assembly code, we
set the maximum batch length to 2 and thus composed
1−(2+1)3

1−(2+1) − 1 = 12 batches. The examination confirmed the
successful cross-event optimization in this proof-of-concept
example. As expected, when an Increment event is not
followed by a Set event within the same batch, the compiler
generates assembly code corresponding to the Increment
event. However, if the Increment event is followed by
a Set event, the loop is omitted entirely, leaving only the
assignment of the Set event.

B. Speedup

We tested 24 different configurations, varying in the max-
imum batch length and the proportion ps of Set events. We
set ps to 5%, 25%, 50%, and 75%.

For each simulation run, 1 000 000 initial events were sched-
uled. No new events were scheduled during the simulation. We
scheduled one event at each integer time step. The lookahead
was set to 1 000 000 units of time, i.e., all executed batches
had the maximum batch length.

Each configuration was run 20 times. For each run, a differ-
ent seed for the pseudo-random number generator was used. In
Fig. 3, the result is plotted. The achieved speedup depends on
the chance that the computation-intensive Increment event
may be omitted.

We can observe that in an idealized case, event batching
achieves substantial speedup. Assuming that the impact of Set
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Fig. 4. Effect of event batching on compile times.

events on the runtime is negligible, given a fixed batch length
n, the proportion pi = 1 − ps of Increment events, the
maximum possible speedup smax can be calculated based on
the expected number of Increment events in each batch, and
the probability that an Increment event at a certain position
in the batch will not be followed by any Set events: smax =

npi(
1−pin+1

1−pi − 1)−1 = n(1−pi)
1−pin (see App. B for a proof). In

Figure 3, smax is plotted for ps = 0.5. With increasing batch
lengths, smax approaches n/2. Our performance measurements
closely approximate the maximum possible speedup.

To investigate the overhead incurred purely by the runtime
batch selection, we compared the runtime with a one-by-
one event execution as in common sequential discrete-event
simulators. When executing m Set events in the unbatched
case and with our batching approach, we observed that the
runtime batch selection adds overhead of about 5% at an
average batch length of 2.

C. Compilation

To benchmark the compile-time algorithm (cf. Sec. III-A),
four configurations, varying in the number of different event
types, were compiled 15 times. Once the compilation time for
a single configuration exceeded 240 seconds, the compilation
was stopped. The compile times are plotted in Fig. 4. As
expected from the increase in the batch count, the compile
times increase exponentially. With ten different event types and
a maximum batch length of 5, the compilation time exceeds
240 seconds drastically.

Although these numbers seem enormous, large C++ projects
like simulation models can easily reach compile times in
ranges of several minutes. As long as the number of event
types is small, the relative impact on compilation times may
be acceptable. Further, the compilation times can be reduced
by choosing a smaller maximum batch length. Additionally,
as discussed in Section III-A, due to the need for a ν-
event, a substantial number of batches will never be used by
the scheduler. Overall, ( 1−(|Σ|+1)n+1

1−(|Σ|+1) − 1) − ( 1−|Σ|n+1

1−|Σ| − 1)
redundant batches are composed. As an example, with five
different event types and a maximum batch length of five,
9331 batches (i.e., 58%) are redundant. In the future, a refined
enumeration scheme could eliminate these redundant batches.

D. Discussion

In this section, we first state a number of limitations and
technical aspects of the batching approach. Subsequently, we
discuss potential avenues for future work.

Overall, the approach imposes only minor restrictions on
the model development. A marginal burden on modelers is
given by the assumption made in the batch composition that
function pointers to all event handlers are initially stored in
an array.

A key avenue for future work lies in reducing the overhead
during compilation and at runtime. Major opportunities for
improvements are given within the batch composition pro-
cess: since a large proportion of the composed batches are
redundant, an improved enumeration scheme could reduce the
number of batches.

During the execution of a batch, each event may generate
new events immediately. By postponing the scheduling of all
new events to the end of a batch execution, it may be possible
to improve performance through a reduction in accesses to the
data structure holding the scheduled events.

Currently, the runtime mechanism executes batches con-
servatively, i.e., never violating the simulation correctness.
If the batch lengths achievable in this manner are small, a
speculative approach could improve performance. Similarly
to optimistically synchronized parallel simulations [2], if the
execution of a batch generates new events with time stamps
earlier than the last event in the batch, a rollback mechanism
could restore a correct simulation state.

Whether significant opportunities for cross-event compiler
optimizations exist in real-world models is still to be inves-
tigated. For instance, in real-world simulation models, the
assignment of events to simulated entities is typically only
known at runtime. Thus, the compiler may not be able to
determine whether a variable change by an event will be
overwritten by a successor event. It may be possible to
formulate implementation guidelines for simulation models to
maximize opportunities for optimizations.

A wide range of modern applications is implemented in an
event-driven manner, i.e., events representing computational
tasks are dynamically scheduled and extracted according to
their priorities. We believe that the proposed batching approach
is generic enough to be applied to event-driven applications
beyond simulations.

Finally, since our approach relies on C++ template metapro-
gramming, the feasibility of the approach beyond C++-based
simulators should be explored. Generally, the approach re-
quires compile-time evaluated metaprogramming facilities that
support code transformation, code generation and reflection.
However, reflection is not needed if constructs such as function
pointers exist. Beyond ahead-of-time compilation, modern
just-in-time compilers achieve remarkable optimization results
through runtime profiling. Hence, just-in-time compilation
could focus on the creation of relevant batches according to
the observed runtime behavior of the considered simulation
model.
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V. CONCLUSION

We presented an approach that extends the scope of com-
piler optimizations in discrete-event simulation beyond in-
dividual events. Using C++ template metaprogramming, all
possible sequences of events up to a configurable sequence
length are composed at compile time. A runtime mechanism
selects and executes event batches, relying on model-specific
temporal properties to maintain correctness. We showed that
the approach is feasible, achieves substantial speedup in a
proof-of-concept example and does not add immense runtime
overhead. Only minor additional effort is required by modelers
to apply the approach. The main limitation is a substantial
increase in compilation times and executable sizes, both of
which may be improved on in future work by an advanced
batch composition approach. Further, we consider experiments
with real-world discrete-event simulation models and general
event-driven applications the most interesting avenues for
further exploration.
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APPENDIX A
BATCH COMPOSITION META PROGRAM PSEUDO CODE

In Algorithm 1 the meta program pseudo code for the batch
composition procedure, which takes place during compilation,
is given. The function ENUMERATEBATCHES() enumerates
all possible batch IDs in a recursive manner. For each ID
GENBATCH() is invoked where the different event types are
identified with the modified Horner’s scheme. The event
types’ handling functions are concatenated with APPEND-
FUNCCALL() into a single function body and the pointer to
the resulting function is stored.

Algorithm 1 Batch Composition Metaprogram

eventHandlers : Array of Functionpointer
batchedHandlers : Array of Functionpointer
maxBatchSize : N
eventTypeCount = sizeof(eventHandlers) : N
batchCount = 1−eventTypeCountmaxBatchSize+1

1−eventTypeCount
− 1 : N

function GENERATEBATCHES
enumerateBatches(0)

function ENUMERATEBATCHES(batchID : N)
if batchID = batchCount then return
pointer = pointer to new empty function : Functionpointer
batchedHandlers[batchID] := genBatch(batchID, pointer)
enumerateBatches(batchID + 1) . enumerate all indexes

function GENBATCH(batchID : N, pointer : Functionpointer)
if batchID = 0 then return pointer . batch is complete
eventIndex := batchID mod eventTypeCount . factor of kth

exponent
if eventIndex > 0 then . check for ν-event

appendFuncCall(pointer, eventHandlers[eventIndex− 1])

genBatch((batchID/eventTypeCount), pointer) . continue
with quotient
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APPENDIX B
PROOF OF smax

pI =̂ probability of an Increment Event
pS = 1− pI=̂ probability of a Set Event
n =̂ batch length
T1=̂ standard DES time
Tp=̂ batched DES time
S = T1

Tp
=̂ speedup

E[S] = E[T1]
E[Tp]

E[T1] = n · pI
E[Tp] =

∑n−1
j=1 (j · pI j · pS) + n · pI

Lemma 1. Closed form of E[Tp].

E[Tp] =

n−1∑
j=1

(j · pI j · pS) + n · pi =
1− pIn

1
pI
− 1

Proof.

E[Tp] =

n−1∑
j=1

(j · pI j · pS) + n · pIn

=

n−1∑
j=1

(j · pI j · (1− pI)) + n · pIn

= (1− pI)
n−1∑
j=1

(j · pI j) + n · pIn

=

n−1∑
j=1

j · pI j − pI
n−1∑
j=1

j · pI j + n · pIn

=

n−1∑
j=1

j · pI j + n · pIn − pI
n−1∑
j=1

j · pI j

=

n∑
j=1

j · pI j − pI
n−1∑
j=1

j · pI j

=

n∑
j=1

j · pI j −
n−1∑
j=1

j · pI j+1

=

n∑
j=1

j · pI j −
n∑
j=2

(j − 1) · pI j

=

n∑
j=1

j · pI j −
n∑
j=1

(j − 1) · pI j

=

n∑
j=1

(j − j + 1)pI
j

=

n∑
j=1

pI
j

= pI

n∑
j=1

pI
j−1

=
(1− pI) · (

∑n−1
j=0 pI

j) · pI
1− pI

=
(1− pIn) · pI

1− pI
=

1− pIn
1
pI
− 1

Corollary 1. Maximum speedup smax. The expected value for
the maximum speedup is

smax = E[S] =
n · (1− pI)

1− pIn
.

Proof.

E[S] =
E[T1]

E[Tp]

=
n · pI
1−pIn

1
pI
−1

= (n · pI) ·
1
pI
− 1

1− pIn

=
n · pI · 1

pI
− n · pI

1− pIn

=

n·pI
pI
− n · pI

1− pIn

=
n− n · pI
1− pIn

=
n · (1− pI)

1− pIn
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