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ABSTRACT
The parallel execution of discrete-event simulations on com-
modity GPUs has been shown to achieve high event rates.
Most previous proposals have focused on conservative syn-
chronization, which typically extracts only limited paral-
lelism in cases of low event density in simulated time. We
present the design and implementation of an optimistic fully
GPU-based parallel discrete-event simulator based on the
Time Warp synchronization algorithm. The optimistic sim-
ulator implementation is compared with an otherwise identi-
cal implementation using conservative synchronization. Our
evaluation shows that in most cases, the increase in par-
allelism when using optimistic synchronization significantly
outweighs the increased overhead for state keeping and roll-
backs. To reduce the cost of state keeping, we show how
XORWOW, the default pseudo-random number generator
in CUDA, can be reversed based solely on its current state.
Since the optimal configuration of multiple performance-
critical simulator parameters depends on the behavior of
the simulation model, these parameters are adapted dynam-
ically based on performance measurements and heuristic op-
timization at runtime. We evaluate the simulator using the
PHOLD benchmark model and a simplified model of peer-
to-peer networks using the Kademlia protocol. On a com-
modity GPU, the optimistic simulator achieves event rates
of up to 81.4 million events per second and a speedup of up
to 3.6 compared with conservative synchronization.

1. INTRODUCTION
In the past years, heterogeneous GPU-accelerated sim-

ulation approaches have begun to complement traditional
CPU-based parallel and distributed simulations to satisfy
the computational demands created by the increasing scale
and complexity of discrete-event models. Even inexpen-
sive commodity many-core GPUs can provide substantial
speedup compared with a purely CPU-based execution.

Since large-scale simulations using CPU-based clusters fre-
quently occupy substantial amounts of computing resources,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS’17, May 24 - 26, 2017, Singapore, Singapore
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4489-0/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3064911.3064912

such approaches must be justified by the gains in produc-
tivity. Recent work has also begun to take the energy con-
sumption of distributed simulations into consideration [5].
Further, since researchers typically rely on shared compu-
tational resources, the delays between submission of a sim-
ulation task and its execution can be substantial. In such
cases, a commodity GPU in a researcher’s workstation can
enable swift feedback at comparatively low resource and en-
ergy consumption.

GPU-based discrete-event simulation approaches fall into
two main categories: Hybrid CPU-GPU-based simulation [2,
4, 11, 23] maintains a CPU-based simulator core, while ex-
ecuting some or all parts of the simulation model on the
GPU. Hybrid simulation performs well in case individual
simulation events are associated with significant computa-
tion. In fully GPU-based simulation [1, 13, 21, 22, 28, 32],
the simulator core is executed on the GPU as well. Since
significant data transfers between the CPU and GPU con-
text are required only during initialization and termination,
fully GPU-based simulation can efficiently execute models
with fine-grained events as well.

In parallel simulations, the choice of synchronization al-
gorithm has a strong impact on performance. Most previ-
ous works on fully GPU-based simulation focused on conser-
vative synchronization, where the simulation correctness is
maintained at all times. These works already demonstrated
the large event rates achievable on commodity GPUs.

Optimistic synchronization allows for temporary violations
of correctness, but restores a previous simulation state in
case such a violation occurs. Hence, larger parallelism may
be extracted at the cost of occasional rollbacks. On the one
hand, optimistic synchronization seems to be an attractive
approach to fully GPU-based simulation, since the massively
parallel computational resources of a GPU may be utilized
more fully. On the other hand, the rollback mechanism tends
to increase the frequency of memory accesses, which are as-
sociated with particularly large costs on the GPU.

In this paper, we aim to clarify whether the benefits of op-
timistic synchronization outweigh its drawbacks in the con-
text of fully GPU-based discrete-event simulation and make
the following main contributions:

1. Time Warp on the GPU: We propose a design
and implementation of optimistic synchronization for paral-
lel discrete-event simulation on a GPU. We identify key sim-
ulator parameters and apply heuristic optimization to select
suitable parameter combinations at runtime. The simulator
and model code is made available to the community1.

1http://github.com/GPUTW
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2. Reverse Computation for CUDA RNG: We show
how XORWOW, the default random number generator in
CUDA, can be reversed to reduce the cost of rollbacks.

3. Comparison with Conservative Synchroniza-
tion: The overall performance is evaluated in comparison
with a synchronous conservative scheme on the example of
the PHOLD benchmark model and a simplified model of
peer-to-peer networks based on the Kademlia protocol.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses required background and related work in
parallel discrete-event simulation and general-purpose com-
putation on GPUs. Section 3 describes our simulator de-
sign and implementation. Section 4 analyzes performance-
critical parameters and describes the autotuning approach.
Section 5 presents a reversal of the XORWOW random num-
ber generator. Section 6 evaluates the performance of the
simulator. Section 7 discusses limitations and open research
issues. Section 8 summarizes and concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Parallel Discrete-Event Simulation
Parallel discrete-event simulation is a method to decrease

the wall-clock runtime of a discrete-event simulation by dis-
tributing the system state to a number of logical processes
(LPs), each of which maintains its own simulation time and
executes events in non-decreasing timestamp order. Newly
created events may be sent to other LPs. To maintain
the causal correctness of the simulation, two main classes
of synchronization algorithms have been proposed: in con-
servative synchronization, LPs execute events only in case
future causality violations can be ruled out, i.e., no event
with smaller timestamp may be received from a remote LP.
Optimistic synchronization allows for temporary causality
violations and subsequently restores a previous correct sim-
ulation state using a rollback mechanism. An introduction
to parallel and distributed simulation is given in [8].

YAWNS [19] is a well-known conservative synchronization
algorithm that executes the simulation by considering a se-
quence of intervals in simulated time spanning the current
minimum timestamp of any event in the simulation up to a
limit determined using the lookahead, i.e., the lowest possi-
ble delta between a new event’s timestamp and its creation.
Valid lookahead values are determined according to simu-
lation model characteristics and may vary over time and
between different pairs of simulated entities. In simulations
of computer networks, a lookahead value that is valid over
the course of the entire simulation is given by the lowest
possible link latency between any two nodes in the network.
Events are processed in multiple executions, wherein each
LP either executes one event or is idle. Assuming identical
per-event processing times, if events within a window are
not evenly distributed to LPs, an increasing number of LPs
becomes idle before a new window is determined.

Time Warp [10] is an optimistic synchronization algo-
rithm that can scale to millions of cores [3]. Rollbacks
in Time Warp are bounded by global virtual time (GVT),
which is a point in simulated time at which the correctness
of the simulation state is guaranteed. If none of the LPs has
executed any events out of timestamp order yet, the GVT
can be calculated as the lowest timestamp of any LP’s next
event, if any. If a causality violation occurs, the simulation
must be rolled back at most to the GVT.

Figure 1: The three lists used in the Time Warp protocol.

Contrary to the single future event list per LP in conserva-
tive algorithms, Time Warp requires three lists per LP: The
event list is similar to the future event list in conservative
synchronization, but may temporarily hold past events as
well. During a rollback, past events may be undone and
subsequently re-executed. The state list stores snapshots
of an LP’s state that are used during rollbacks to restore a
correct simulation state. The antimessage list contains a
copy (“antimessage”) of each event sent to a remote LP. An-
timessages are sent to remote LPs to cancel previously sent
events. The remote LP removes the event from its event list.
If the event in question has already been handled, the LP
rolls back to an earlier point in simulated time.

Figure 1 illustrates the three lists. The event list contains
past and future events. For each past event, there is one
state in the state list and as many entries in the antimessage
list as there are newly scheduled events.

Depending on the operations performed in event handlers,
using reverse computation [6] can be applied to arrive at a
previous state. While some operations such as incrementa-
tion of an integer are non-destructive and can be reversed
without any state saving, typically a combination of reverse
combination and state saving is applied. The benefits of
reverse computation are a decreased memory consumption
and – depending on the cost of memory accesses in relation
to computation – a potential decrease in simulation runtime.

2.2 GPGPU Basics
While GPUs were originally designed to handle the data-

parallel workloads involved in rendering three-dimensional
scenes, general-purpose computation on GPUs (GPGPU)
enables the use of the hundreds of arithmetic units of modern
graphics cards to solve computational problems in a variety
of domains such as signal processing or machine learning.
Here, we briefly discuss key GPGPU concepts, focusing on
the GPGPU platform NVIDIA CUDA [20].

CUDA code is formulated in so-called kernels, which can
be called from CPU code. GPU threads execute in groups
of 32 called warps. Threads in a warp execute a shared
sequence of instructions in lock-step. In case of divergent
branching (e.g., through if-else), the branches are serialized.
Threads are further organized into blocks of configurable
size, which are assigned a small region of low-latency mem-
ory shared within the block. An important restriction is that
the visibility of writes to memory among threads within a
block can be guaranteed during execution of a kernel with-
out significant overhead, whereas guaranteeing the visibility
across blocks is more expensive and typically achieved by
terminating the currently running kernel. CUDA provides a
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number of atomic operations for memory accesses. Since the
graphics memory is designed for high throughput instead of
low latency, cache misses can incur up to 600 clock cycles
of latency. Given a sufficient number of concurrent warps,
a hardware scheduler can hide memory access latencies by
dynamically exchanging control between warps.

2.3 GPU-Based Simulation
We differentiate between two classes of approaches that

make use of GPUs for acceleration of discrete-event simula-
tions: in hybrid GPU-based simulation, event management
– i.e., the selection of events for execution and the scheduling
of new events – remains on the CPU, while the execution of
events is performed in parallel on the GPU (e.g., [2, 11, 23,
4]). A benefit of the hybrid approach is that multiple GPUs
can be utilized easily. On the other hand, events must be
sufficiently computationally expensive so that the parallel
execution on the GPU amortizes the cost of data transfers
between host and graphics memory.

In fully GPU-based simulation, event management is per-
formed on the GPU as well. Hence, fully GPU-based sim-
ulation largely avoids the costs of data transfers between
host and graphics memory and can efficiently support mod-
els where individual events are associated with only small
amounts of computation. Here, we focus on fully GPU-based
discrete-event simulation, omitting time-stepped approaches
and works that focus on specific model domains (e.g., [17]).

In 2006, Perumalla explored various fully GPU-based sim-
ulator designs [22]. Although a traditional discrete-event ex-
ecution process was not feasible due to hardware limitations
at the time, substantial speedup was achieved by exploiting
the concurrency of events with identical timestamps.

In 2010, Park et al. proposed a fully GPU-based simulator
that uses a tolerance interval in simulated time to increase
the number of events that can be executed in parallel [21].

In 2013, Tang et al. presented a fully GPU-based simu-
lator that processes events similarly to the YAWNS algo-
rithm [32]. Instead of strictly limiting execution to events
within the current window, parallelism is increased by iden-
tifying candidate events that may become safe to execute
before a new window is calculated. When limiting the set
of receivers of each simulated entity, the authors report an
event rate of up to about 13 million events per second.

In 2014, Andelfinger et al. proposed a fully GPU-based
conservative simulator implementation that adapts the LP
size at runtime to balance parallelism and event manage-
ment overheads [1]. Similarly, our proposed optimistic simu-
lator adapts the LP size as one of the autotuned parameters.

In 2015, Swenson proposed a number of fully GPU-based
simulator designs [28]. An event rate of up to 120 million
events per second is achieved under the assumption that
each event creates exactly one new event.

The previously discussed approaches are all based on con-
servative synchronization. A fully GPU-based simulator de-
sign using an optimistic synchronization approach was pre-
sented in 2013 by Li et al. [13]. The approach requires all
events to be created before any events are executed. During
the execution phase, all of the events are executed in par-
allel. Now, events are iteratively canceled and re-executed
until a correct final simulation state is reached.

Contrary to some of the discussed works, our proposed
simulator poses no restrictions on event creation beyond lim-
its given by the available graphics memory. The core logic

of our design is quite similar to CPU-based Time Warp sys-
tems in shared memory settings [7]. Differences arise from
the fine-grained parallelism of the GPU, which enables us to
maintain low list management overheads by forming small
LPs of only a few simulated entities each.

2.4 Considered Simulation Models

2.4.1 PHOLD
PHOLD (parallel hold) [9] is a generalization of the se-

quential hold benchmark model [31] that, in addition to
simulated time, also considers a configurable number of sim-
ulated entities to which events are assigned. We apply the
PHOLD model as follows: a constant number of events (the
population) is initially created and assigned to simulated en-
tities in a round-robin fashion. The execution of an event
creates a new event targeting a random entity after a random
delta in simulated time. Target entities are drawn from a
uniform distribution and deltas in simulated time are drawn
from an exponential distribution. We configure an arbitrary
lookahead of 10 by adding this value to each drawn time
delta. The PHOLD model accepts three parameters: the
number of simulated entities, the population size and the
parameter λ of the exponential distribution. Since the per-
formance of the simulation is strongly affected by the rela-
tion between λ and the chosen lookahead, we vary λ over
multiple orders of magnitude. We refer to the simulated
entities as nodes. However, the proposed simulator is not
confined to simulations of networks.

Since executing an event involves only a low amount of
computation, hold and PHOLD emphasize the event man-
agement performance of the simulator (e.g., [25]). As all
events are handled in the same manner, there are no diver-
gent branches across parallel event executions. Thus, event
execution on the GPU must be expected to be more efficient
than with models of real-world systems.

2.4.2 Peer-to-Peer Network
To show the effects of larger event complexity and more

significant branching across events, we additionally evaluate
the simulator using a model of networks based on Kadem-
lia [16]. Kademlia is a protocol used to form distributed
hash tables (DHTs) for key-value storage and retrieval in
a peer-to-peer network and is the basis of the BitTorrent
Mainline DHT, currently comprised of around 10 million
nodes2. The value associated with a key is retrieved in a
lookup by iteratively querying nodes on the path to the key.

After initialization, events of three types occur: 1. Cre-
ation of initial requests to immediate neighbors of the ini-
tiating node. 2. Reception of a request: on reception, the
current node looks up the nearest known nodes to the desired
identifier and transmits a response message to the node that
initiated the lookup. 3. Reception of a response: a reception
event updates a list of the closest nodes to the desired key
known to the initiating node and transmits further requests
to maintain a configured number of in-flight requests. Link
latencies between nodes are drawn from a uniform distribu-
tion on {10, 11, . . . , 200}. Once a response contains no closer
nodes and all nodes in the list have responded, the lookup
terminates and a new lookup is scheduled after a random de-
lay drawn from a uniform distribution on {10, 11, . . . , Dmax},
Dmax being a model parameter. Smaller Dmax increases the

2http://dsn.tm.kit.edu/misc 2917.php
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event density in simulated time. Due to the fixed lower
bound on the link latency and lookup delay distributions,
we use a fixed lookahead value of 10.

Execution of an event involves memory accesses to look
up routing table entries, the creation of up to 8 new events,
and atomic operations to access global statistics such as the
number and duration of key-value lookups.

3. SIMULATOR DESIGN
In the following, we describe the simulation loop executed

by the GPU-based simulator, as well as the chosen mem-
ory layout. A number of performance-critical simulator pa-
rameters arise – the number of simulated nodes that form
an LP, the degree of optimism when executing events, and
the threshold of inactive LPs before synchronization is per-
formed. These parameters are further analyzed in Section 4.

The user implements a new model by providing the follow-
ing core functions: set_model_params() and init_node()

initialize the model, get_lookahead() returns the lookahead
of the model, handle_event() and roll_back_event() per-
form forward and backward execution of an event described
by a pointer to an event structure (cf. Section 5.2). State
saving is performed during event handling by calling ap-

pend_state_to_queue() and append_antimsg_to_queue().

3.1 Simulation Loop
Our goal is to map the steps of a discrete-event simulation

loop – selection of events for execution, handling of events,
and creation of new events – to the GPU. Since the GPU’s
threads have shared access to graphics memory, the simula-
tion can act on global knowledge of the simulation state.
The single-program, multiple-data paradigm of the GPU
suggests a synchronous simulation process, i.e., all threads
perform the same simulation step at the same time.

The simulation proceeds as a sequence of iterations con-
sisting of multiple steps (cf. Figure 2), the core step being
the parallel execution of up to one event per LP by each
GPU thread. The remaining steps are required for syn-
chronization between LPs and for event management. As
a consequence of separating the execution of events from
the insertion into event lists, newly created events are not
visible to LPs before a new iteration begins. Thus, a chal-
lenge lies in balancing synchronization and event manage-
ment overheads with parallelism: multiple executions can
be performed within a single iteration, while still maintain-
ing strict correctness and deterministic results. However, as
illustrated in Figure 3, when increasing the number of execu-
tions per iteration, more and more LPs become idle, either
due to a lack of further events, or due to event lists being at
capacity. Due to an increase of the deviation of simulation
times between LPs, in the optimistic case, the probability of
rollbacks may increase as well. Once a new iteration begins,
newly created events are considered for execution, increasing
the opportunities to execute events in parallel.

In the following, we contrast the simulation steps per it-
eration for the conservative and optimistic case:

Conservative synchronization first determines the earliest
timestamp tmin in the simulation. Events within [tmin, tmin+
lookahead) can be executed safely. This is done in one or
more executions, each LP processing its earliest event, if any.
During each execution, new events may be created, which
are appended in an unsorted fashion to the target LP’s fu-
ture event lists (FEL) using atomic operations. Since events

Conservative 
Synchronization

Optimistic
Synchronization

Determine tmin

Execute Next Events

Delete Past Events

Insert New Events

Determine GVT

Delete Comittable Events

Execute Next Events

Roll Back Events

Insert New Events

Iteration

Figure 2: Comparison of the simulation steps during an it-
eration with conservative and optimistic synchronization.

GVT

10 32

12 17 30 35

30

Simulated time

23

Thread 1, LP 1

Thread 2, LP 2

Thread 3, LP 3

15 20

10 ...

37

Exec. 1 Exec. 2 Exec. 3 Exec. 4

Figure 3: An example of performing multiple executions in
one iteration to reduce synchronization overhead. Events
grouped in a rectangle are processed in one execution. Since
newly created events (gray) are not considered before the
next iteration begins, the number of executions per iteration
affects both the parallelism and the probability of rollbacks.

are extracted by one thread per queue, atomic operations
are not required during extraction. After a number of ex-
ecutions, processed events are deleted from the LPs’ FELs.
Finally, in preparation for the next iteration, each FEL is
sorted, including newly created events.

Optimistic synchronization first calculates the global vir-
tual time (GVT) as a lower bound for future rollbacks. En-
tries in the event list, state list, and antimessage list with
earlier timestamp than the GVT will not be required in any
future rollback and are deleted. Now, as in conservative
synchronization, LPs process their respective earliest event
in parallel. Contrary to conservative synchronization, it is
not necessary to limit the consideration of events to a cer-
tain range in simulated time. However, we will see in Sec-
tion 4.1.2 that artificially limiting the optimism can increase
performance. As with conservative synchronization, new
events are initially appended in an unsorted fashion to the
target LPs’ event lists. Due to the memory requirements of
storing three lists per LP and of storing uncommitted events,
there is a need to handle cases where newly created events
exceed the capacity of the receiving LP. In such cases, the
LP that created the event rolls back its current event and is
inactive for the remainder of the iteration.

During the executions within an iteration, the minimum
timestamp of any newly received event of each LP is stored.
After a number of executions, previously executed events
with timestamps larger than or equal to this minimum are
rolled back to restore the correctness of the simulation. Fi-
nally, the event lists are sorted before a new iteration begins.

To enable a fair comparison between conservative and op-
timistic synchronization on the GPU, we implemented both
mechanisms as part of the same simulator engine, using a
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shared implementation of event lists, event insertion, earli-
est timestamp calculation, and so forth. Both tmin and GVT
are determined by a parallel reduction in logarithmic time.
Event handling and list operations are performed by a single
thread per LP. Thus, in case threads within a warp perform
the same operation, e.g., executing an event of the same
type or moving an event, the single-instruction, multiple-
data (SIMD) architecture of the GPU is exploited.

3.2 Memory Layout
Due to the substantial cost of dynamic memory allocation

on the GPU, all memory is allocated statically during ini-
tialization. For each list type (event list, antimessage list,
state list), a single array in graphic memory is allocated that
holds all LPs’ lists. We implemented the LPs’ lists as cir-
cular buffers (cf. Figure 4). For each LP, we store the offset
ohead of the first entry, the offset ofuture of the first entry
in the simulated future, the offset ounsorted of the first entry
that has not yet been inserted into the sorted part of the
list, and the offset onext of the next new entry. The offsets
separate the list into past, future, and unsorted entries.

List operations are performed by one GPU thread per list.
Removal of the earliest entry from a list can be performed
in constant time. Inserting a new entry requires linear time,
since all entries with larger timestamps are moved one po-
sition towards the end of the list. The large cost for in-
sertion can be tolerated in case each list contains only a
relatively small number of entries, which we can strive for
by using the massive core counts of the GPU to form ex-
tremely small LPs, e.g., of only 1-32 simulated nodes in the
case of a network simulation. We investigate the impact
of different overall numbers of list entries on the simulation
performance in Section 6. An assessment of alternative list
implementations is part of our future work.

The simulator design poses no limitations of the memory
layout used by models. However, to achieve high perfor-
mance, dynamic memory allocation should be minimized.

The number of nodes that are aggregated to form an LP
(LP size) can be adapted by adjusting the LP boundaries in
memory and merging or separating events according to the
new boundaries. In Figure 5, events are represented by their

ohead ofutureounsorted onext

Figure 4: Example of an event list for a single LP. Stored
offsets separate past, future and unsorted entries.

Figure 5: Steps during merging to double the LP size.

timestamps and underlined in case they have already been
executed. First, to create space for the merged list, each
LP’s events are aligned to the beginning of the LP’s segment.
The events in the merged list must be sorted according to
whether they have already been executed, and in timestamp
order. To ensure these properties, some LPs may need to
perform rollbacks (cf. Appendix A).

The LP size incurs a tradeoff between event insertion over-
head and parallelism: a small LP size, e.g., 1 node per LP,
leads to small event lists and low overhead for event inser-
tion. At the same time, the probability increases that an LP
has no safe event and thus remains idle during an execution.

While with conservative synchronization, the only required
list operations are removal of the earliest event and inser-
tion of new events, optimistic synchronization requires event
deletion as well: if an LP initiates a rollback, events up to
a previous point in simulated time are removed. In case
events have been sent since then, antimessages are sent to
the receivers of the events. Each antimessage may trigger
the deletion of an event. In our implementation, such events
are identified using linear search in reverse order during the
rollback step and deleted in the insertion step.

4. PARAMETER ANALYSIS AND
AUTOTUNING

The GPU-based simulator provides a number of tuning
parameters that enable a tradeoff between parallelism and
overhead for synchronization and event management. In this
section, we study the impact of these parameters on the sim-
ulation performance and describe the autotuning approach
used to determine a suitable configuration at runtime.

Our measurements system is equipped with 4 12-core Intel
Xeon E5-2660 processors (base clock rate: 2.1 GHz, turbo
clock rate: 3.3 GHz), 64 GiB of RAM and an NVIDIA
GeForce GTX 980 Ti with 6 GiB of RAM and 2816 CUDA
cores clocked at up to 1392 MHz. Plotted event rates are
averages of 3 runs. 95% confidence intervals are plotted but
frequently small enough to be nearly invisible.

4.1 Impact of Parameters

4.1.1 LP Size
On a GPU, typically a much larger number of threads is

scheduled than there are physical cores, enabling the GPU’s
hardware scheduler to perform memory access latency hid-
ing. This has two consequences: first, the large number of
threads enables the use of small LPs, e.g., of 1-32 simulated
nodes in a network simulation. Second, since the thread
count is decoupled from the core count, a suitable LP size
cannot be deduced directly from hardware properties.

Figure 6 shows the event rate achieved for the PHOLD
model with a network size of 1 048 576 nodes and a popu-
lation equal to the network size with different LP sizes and
conservative synchronization. Initially, events are evenly dis-
tributed to the nodes, with timestamps according to the in-
dex in each node’s queue, i.e., all zero in the cases where
the population equals the network size. We can see that
with small λ, the LP size has a substantial impact on perfor-
mance. As discussed in Section 3.1, with lower event density
in simulated time, the average number of LPs that have a
safe event during an execution decreases. An increase in LP
size tends to increase the number of LPs with a safe event
at the cost of the increased overheads of larger FELs.
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Figure 6: Event rate with different LP sizes for PHOLD
using conservative synchronization.
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Figure 7: Event rate with different LP sizes for PHOLD
with λ = 10−2 using optimistic synchronization.

With optimistic synchronization, we observed that with
these parameters, a one-to-one mapping of nodes to LPs
achieves highest performance (cf. Figure 7 for λ = 10−2).
However, when varying the remaining simulator parameters,
the optimal LP size varies with the model parameters as well.

4.1.2 Optimism Bound
In its purest form, optimistic synchronization allows for

execution of events that lie arbitrarily far in the simulated
future. However, with an increasing deviation of current
simulation times between LPs, the probability of causality
violations increases as well. Hence, as already proposed in
early works in the field [27, 24, 30], it can be beneficial to
limit the execution of events to timestamps below a cer-
tain delta from the GVT. We refer to this delta as the op-
timism bound. Since executing events within [GVT,GVT +
lookahead) cannot cause causality violations, suitable op-
timism bounds are equal to or larger than the lookahead.
Figure 8 illustrates the use of an optimism bound.

Figure 9 shows the event rates achieved with different op-
timism bounds for the PHOLD model with a network size of
1 048 576 nodes and a population of 1 048 576. The optimal
optimism bound depends strongly on λ, being around 2 200
units of simulated time with λ = 10−2 and around 12 000
units with λ = 10−4. Event rates decline substantially if an
exceedingly small or large optimism bound is selected.

4.1.3 Inactivity Threshold
As described in Section 3.1, the simulation proceeds in a

sequence of iterations, each of which includes one or more
executions of events. If only one execution is performed per
iteration, the simulator may perform calculation of GVT or
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Figure 8: Bounding the optimism in Time Warp. White
events cannot cause causality violations and are safe to be
processed; light gray events may cause violations; dark gray
events are not considered for execution yet.
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Figure 9: Event rate with different optimism bounds for
PHOLD using optimistic synchronization with state saving.

tmin, deletion of committable events, roll backs and inser-
tion of new events into lists more frequently than necessary,
potentially incurring substantial overhead. However, with
increasing numbers of executions in a single iteration, more
and more LPs will become inactive due to a lack of events
in the current window or within the optimism bound, or
due to lists being at capacity. Figure 10 shows the event
rates achieved for the PHOLD model with a network size of
1 048 576 nodes and a population of 1 048 576, varying the
percentage of inactive LPs (inactivity threshold) at which
executions for the current iteration are terminated. The LP
size was set to 4 nodes per LP. Again, there is a strong de-
pendence on the PHOLD parameter λ. With the relatively
large event density in simulated time given by λ = 10−2,
the optimal threshold is around 95%, while with λ = 10−4,
values around 45 − 60% are optimal. With λ = 10−2,
the average number of executions per iteration increases
monotonously from approximately 1 to 9 for thresholds of
0% to 95% and peaks at about 18 for a threshold of 100%.

4.1.4 Block Size
The configured number of CUDA threads per block in-

fluences the allocation of the GPUs resources to the sched-
uled threads. The selection of a suitable block size with-
out prior performance measurements can be nontrivial [29].
Figure 11 shows measurement results for the PHOLD model
with a network size of 1 048 576, a population of 1 048 576,
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Figure 10: Event rate with different inactivity thresholds for
PHOLD using optimistic synchronization with state saving.
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Figure 11: Event rate with different block sizes for PHOLD
with λ = 10−2, optimistic synchronization with state saving.

and λ = 10−2. Since the event rates for block sizes between
64 and 704 did not vary substantially and since the results
for other model parametrizations were similar in shape, we
selected a block size of 256 threads for all our experiments.

4.2 Autotuning Procedure
We have identified the LP size, the optimism bound and

the number of executions per iteration as three simulator
parameters with a strong impact on performance. Opti-
mal values for these parameters depend on the simulation
model behavior and thus cannot be determined easily prior
to a simulation run. The selection of suitable values is fur-
ther complicated by the dependence across parameters. Fig-
ure 12 shows examples of the effect of two of the considered
parameters on the event rate when executing the PHOLD
model with a network size and population of 1 048 576.

To determine suitable parameter combinations for differ-
ent models and model parametrizations, we perform mea-
surements and adaptation at runtime. We apply the Nelder-
Mead optimization algorithm [18], which searches heuristi-
cally for an extremum of a non-linear function without the
need for calculating derivatives. The algorithm considers
(n + 1) points of an n-dimensional objective function and
iteratively replaces the point with the worst function value
with a new point with a better function value.

For each new point, the simulator parameters are adapted
and the resulting simulator performance is measured. The
duration of each measurement is a model-dependent tradeoff
between the measurement accuracy and the cost of executing
at suboptimal parameter combinations. At each parameter
combination, after a warm up time of 200ms of wall-clock
time, we measured event rates averaging over 300ms.
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Figure 12: Contour graph of event rates for PHOLD, opti-
mistic synchronization with state saving. The dependency
between optimal parameter settings and the variation across
model configurations illustrates the need for autotuning.

5. REVERSE COMPUTATION
A major concern in optimistic synchronization is the cost

of rollbacks. In this section, we describe how XORWOW,
the default random number generator in NVIDIA CUDA,
can be reversed, i.e., how a previous generator state can be
derived solely from the current state.

Although XORWOW has been shown to fail several of the
statistical tests of the TESTU01 suite [12, 26], it is used as
the default random number generator in CUDA. Some pre-
vious works applied reverse computation to combined lin-
ear congruential generators [6]. Reversal of the Mersenne
Twister RNG [15] has also been described previously3.

5.1 Reversal of CUDA RNG
As proposed by Marsaglia [14], a pseudo-random number

generated by XORWOW is the sum of a number generated
by an Xorshift generator and a number generated by a Weyl
sequence. Xorshift generates the next random number by
calculating the exclusive OR of bit-shifted versions of previ-
ously generated numbers according to:

Xn = Xn−1 ⊕ (Xn−1 << 4)⊕Xn−4 ⊕ (Xn−4 >> 2) ⊕
(Xn−4 << 1)⊕ ((Xn−4 >> 2) << 1).

The Weyl sequence used in XORWOW is defined by the
equation

Yn = Yn−1 + 362437 mod 232.

In CUDA, the mutable part of the RNG state for XORWOW
is defined by an unsigned 32 bit integer d and an array v of
5 unsigned 32 bit integers, i.e., 24 bytes in total.

CUDA provides a function curand_init() to skip an arbi-
trary offset in the generated sequence. The number of clock
cycles required to execute this function for XORWOW de-
pends logarithmically on the offset. On an NVIDIA GeForce
GTX 980 Ti, setting the offset to 218 and 262 required 1.12×
107 and 1.33× 108 clock cycles, respectively. At the graph-
ics card’s maximum clock rate of 1392 MHz, this translates
to 8.1ms and 96ms. Since the target offset in the random
number sequence required by rollbacks increases over the
course of a simulation, curand_init() is too expensive to
be a viable alternative to reverse computation.

Figure 13 illustrates the logical operations and state vari-
ables of XORWOW. Here, we sketch the basic idea of the
reversal process on the basis of the values t and r marked in

3https://jazzy.id.au/2010/09/22/cracking random
number generators part 3.html
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Figure 13: Logical operations and state variables of the
XORWOW random number generator.

the figure. The description of the overall reversal procedure
is included in the appendix. The goal is to calculate all bits
ti of t using only the bits ri of r. To simplify the example,
we treat t and r as 4 bit values. During forward generation,
the relationship between r and t is r = t⊕ (t << 1). On the
bit level, we have:

t1 t2 t3 t4
⊕ t2 t3 t4 0

r1 r2 r3 r4

During reversal, the goal is to determine t from r. First,
obviously, t4 = r4. The remaining bits can be determined
in an iterative fashion: ti = ri ⊕ ti+1, i ∈ {1, 2, 3}. The
same idea is applied to reverse all other Xorshift operations
of XORWOW. Since the Weyl sequence used in XORWOW
involves only a simple addition, its reversal is trivial. The
resulting full reversal procedure is described in Appendix B.

Figure 14 compares the time required by forward genera-
tion and reversal of 1 048 576 random numbers per thread,
varying the number of parallel threads (at least 10 repeti-
tions, 95% confidence intervals). On our test system, rever-
sal of a random number generation is around a factor of 12
to 16 slower than forward generation, independently of the
number of parallel threads. Using 1 thread, our test system
performed about 5.95× 107 generations or about 3.70× 106

reversals per second, while with 1 048 576 threads, 3.84×1011

generations or 2.61×1010 reversals per second were achieved.
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Figure 14: Comparison of time required for 1 048 576 for-
ward random number generations (tforward) or reversals
(treverse) per thread using the XORWOW generator.

5.2 Memory Savings
The state of the XORWOW generator in CUDA is com-

prised of 24 bytes of mutable state and 24 bytes holding
parameters for generating numbers following the normal or
Poisson distribution. In the PHOLD model, an event re-
quires 16 bytes of memory. Since the system state of the
PHOLD model is defined solely by the RNG states of all
nodes, reverse computation enables us to eliminate the state
list and the antimessage list entirely. However, past events
must still be stored until the GVT is updated.

In the peer-to-peer network model, a node’s state is de-
fined by its RNG state, the state of any current lookup,
i.e., the number of in-flight messages and the list of closest
nodes to the desired key, as well as statistics such as the

number of executed lookups. Overall, each state comprises
144 bytes. Events hold data associated with requests and
responses and comprise 52 bytes. With reverse computa-
tion, each state can be reduced to 76 bytes. The remaining
state variables can be determined computationally, e.g., the
number of executed lookups is decremented in case an event
representing a final response message is rolled back.

6. PERFORMANCE EVALUATION
Our performance measurements of the simulator imple-

mentation focus on the following questions:

• Does the autotuning mechanism determine parameter
combinations close to the optimum?

• To what degree does the simulation performance ben-
efit from reverse computation?

• How does the overall performance of the optimistic
simulator compare to its conservative counterpart?

The measurements were performed on an NVIDIA GeForce
GTX 980 Ti of the system specified in Section 4. The host
memory usage was below 100 MiB. One CPU core was fully
utilized for performing CUDA API calls. The CPU usage
can be reduced at some cost in performance by using inter-
rupts instead of polling to interact with the GPU.

6.1 Parameter Autotuning
To study the effectiveness of the parameter autotuning,

we compare event rates achieved using parameter autotun-
ing to the results of optimal parameter settings. We first
performed a parameter sweep to determine the combina-
tion of LP size, optimism bound, and number of executions
per iteration that achieved the highest event rate. The re-
sults from these runs are compared to runs using autotuning.
This process was repeated for different values of λ and for
the three considered synchronization schemes during brief
simulation runs spanning 109 events, or between approxi-
mately 10s and 30s of wall-clock time. Table 1 compares the
results of the runs with the highest average event rate (“Op-
timal Param. Rate”) with the results using autotuning when
considering the highest event rate during any measurement
interval of 300ms (“Adaptive Peak Rate”) and the average
over a simulation run of 109 events (“Adaptive Avg. Rate”).

We can see that the autotuning process succeeds in select-
ing suitable parameter combinations. Due to fluctuations in
event rates, the adaptive peak rate occasionally even ex-
ceeds the average rate at the optimal parameter combina-
tion. Since during the autotuning process, some time is
spent in non-optimal parameter combinations, the average
rate is significantly lower than the peak rate. This effect
diminishes when increasing the simulation duration. Aver-
aged over 109 events, autotuning attained 78.29% or more
of the event rate of the optimal parameter combination.

6.2 Synchronization Approaches
The overall event rate using the different simulator vari-

ants was evaluated for the PHOLD and peer-to-peer net-
work models in simulations spanning 5 × 109 and 1 × 109

events, respectively. Runs with very low event density in
simulated time (λ = 10−4 with 16 384 nodes for PHOLD
and Dmax = 10min for the peer-to-peer network model)
were limited to 2 × 109 and 2 × 108 events. For PHOLD,
the population was chosen equal to the network size. The
measurement results are shown in Figure 15. With λ = 1
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λ = 1 λ = 10−2 λ = 10−4

Optimal Param. Rate 93.00 85.96 35.95
Adaptive Peak Rate 90.84 82.78 34.74
Adaptive Avg. Rate 75.16 74.73 31.98
Percentage of Opt. 80.82% 86.94% 88.96%

(a) Conservative synchronization.

λ = 1 λ = 10−2 λ = 10−4

Optimal Param. Rate 63.47 63.16 45.45
Adaptive Peak Rate 65.07 63.86 46.60
Adaptive Avg. Rate 55.66 56.87 37.11
Percentage of Opt. 87.69% 90.04% 81.65%

(b) Optimistic synchronization with state saving.

λ = 1 λ = 10−2 λ = 10−4

Optimal Param. Rate 84.24 85.35 58.46
Adaptive Peak Rate 84.17 84.47 57.33
Adaptive Avg. Rate 70.92 68.91 45.77
Percentage of Opt. 84.19% 80.74% 78.29%

(c) Optimistic synchronization with reverse computation.

Table 1: Comparison of event rates [106events/s] using the
optimal parameter configuration or autotuning for PHOLD
with a network size and population of 1 048 576.

and λ = 10−2, for most parameter combinations, a modest
increase in event rate up to a factor of 1.3 is achieved using
reverse computation compared with conservative synchro-
nization. With network sizes of 524 288 nodes and above,
conservative synchronization outperforms reverse computa-
tion. In these cases of high event density, the overhead for
maintaining additional lists and performing rollbacks in op-
timistic synchronization outweighs any gain in parallelism.
In contrast, with λ = 10−4, the event density is low enough
so that optimistic synchronization with reverse computation
substantially outperforms conservative synchronization for
all considered network sizes, by a factor of up to 3.0. Re-
verse computation consistently achieved higher event rates
than state saving, by a factor of up to 1.3. State saving still
significantly outperformed conservative synchronization for
low event densities or small networks, by a factor of up to
2.9. Figure 16 shows the comparison for the peer-to-peer
network model, varying the maximum delay between key-
value lookups by the individual nodes. LPs were formed by
merging neighboring queues in memory without considera-
tion of the network topology. Optimistic synchronization
with reverse computation consistently outperformed conser-
vative synchronization, by a factor of up to 3.6. For nearly
all parameter combinations, reverse computation achieved
higher event rates than state saving, by a factor of up to
1.2. Again, state saving still consistently outperformed con-
servative synchronization, by a factor of up to 3.4.

As expected, due to the larger complexity of the model
compared to PHOLD, the overall event rates with the peer-
to-peer network model are lower. In fact, for all three syn-
chronization approaches, the event rates achieved forDmax =
10min and small network sizes seem to be within the range
achievable by sequential CPU-based simulators. However,
optimistic synchronization reduces the event density required
to efficiently execute models on the GPU. The size of the
confidence intervals depends chiefly on the selection of sim-
ulator parameters through autotuning, which varies to dif-
ferent degrees depending on the model parametrization.

Table 2 lists an example of the runtime spent on the five
core simulation steps with the different synchronization ap-
proaches for runs spanning 1010 events each. Conservative

 10

 20

 30

 40

 50

 60

 70

 80

 90

16384 32768 65536 131072 262144 524288 1048576

E
v
e
n
t 
R

a
te

 [
1
0

6
 E

v
e
n
ts

/s
]

Network Size [Nodes]

Conservative Synchronization
State Saving

Reverse Computation

(a) λ = 1

 10

 20

 30

 40

 50

 60

 70

 80

16384 32768 65536 131072 262144 524288 1048576

E
v
e
n
t 
R

a
te

 [
1
0

6
 E

v
e
n
ts

/s
]

Network Size [Nodes]

Conservative Synchronization
State Saving

Reverse Computation

(b) λ = 10−2

 0

 10

 20

 30

 40

 50

 60

16384 32768 65536 131072 262144 524288 1048576

E
v
e
n
t 
R

a
te

 [
1
0

6
 E

v
e
n
ts

/s
]

Network Size [Nodes]

Conservative Synchronization
State Saving

Reverse Computation

(c) λ = 10−4

Figure 15: Overall performance comparison for PHOLD.

Conserv. State Saving Rev.Comp.

tmin or GVT 2.99± 0.03s 2.38± 0.19s 2.45± 0.26s
Delete Events 7.18± 0.02s 10.08± 0.62s 9.96± 0.92s
Handle Events 84.69± 0.25s 116.12± 0.86s 76.77± 0.76s

Rollbacks N/A 2.17± 0.37s 2.73± 0.64s
Insert Events 15.25± 0.03s 15.98± 0.40s 16.38± 0.61s

Other 2.03± 0.04s 1.66± 0.13s 1.53± 0.13s
Total 112.14± 0.33s 148.39± 1.56s 109.82± 1.53s

Table 2: Composition of runtime for PHOLD with a network
size and population of 1 048 576 and λ = 10−2.

synchronization and reverse computation spend less time on
deleting events than state saving, since only one list must
be managed and past events can be deleted immediately.
Further, handling events is substantially less expensive than
with state saving, since no state information must be stored.
As in most above results, reverse computation achieves the
lowest runtime overall, since the cost of rollbacks is amor-
tized through higher parallelism during event handling. The
average number of events processed per execution for con-
servative synchronization, state saving and reverse compu-
tation was about 1.17× 105, 1.28× 105 and 1.69× 105.

Figure 17 shows the effect of varying the population at a
fixed network size of 131 072 with λ = 10−2. The results
show the tradeoff between parallelism and costs of list op-
erations: the event rate increases with larger event density,
since more events tend to be processed per execution. How-
ever, around a population of 1 048 576, the costs for list op-
erations begin to outweigh further increases in parallelism.
With the given combination of model parameters, conserva-
tive synchronization achieves higher event rates than reverse
computation at populations of 1 048 576 and above.

To summarize our measurements, we make two main ob-
servations: first, reverse computation outperformed state
saving in nearly all cases. Second, optimistic synchroniza-
tion outperformed conservative synchronization in nearly all
cases. Particular benefits are seen at low event densities.
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Figure 16: Overall performance comparison of the simulator
variants for the peer-to-peer network model.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1024 4096 16384 65536 262144 1048576 4194304

E
v
e
n
t 
R

a
te

 [
1
0

6
 E

v
e
n
ts

/s
]

Population

Conservative Synchronization
State Saving

Reverse Computation

Figure 17: Event rate when varying the population for the
PHOLD model with a network size of 131 072 and λ = 10−2.

7. DISCUSSION
A number of avenues in the design of fully GPU-based

simulators remain to be explored:
Asynchronous execution: Similarly to most previous GPU-

based approaches, the LPs in our simulator execute syn-
chronously. Zhu et al. have previously shown that an asyn-
chronous approach is feasible in a conservative context when
exploiting properties of logic simulation models [33]. Since
synchronous simulations may frequently force LPs to wait
for other LPs to progress, an asynchronous approach may
unlock further parallelism in the optimistic case as well.

Memory distribution: We assumed that each LP is as-
signed the same overall amount of memory for its lists. Fur-
ther, the memory allocated for each of the three lists was
the same across all LP. Since the list size affects blocking of
LPs and thus the required frequency of GVT calculation, a
dynamic adaptation of list sizes may increase performance.

List implementation: One of the focal points of existing
works on fully GPU-based simulation has been the FEL or
event list implementation. Here, we use simple per-LP circu-
lar buffers with constant-time removal and linear-time inser-
tion of events. In our evaluation, we have seen the resulting
significant dependence of the simulation performance on the
lists’ loads. Insertion overhead and parallelism is balanced
by dynamically resizing LPs. We observed a substantial de-
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Figure 18: PHOLD event rate with different per-LP event
list allocation sizes with a network size and population of
1 048 576, λ = 10−2, 1 node per LP using state saving. Event
rates decline strongly when allocating space for more than
128 events per LP, or 2 GiB of memory for all event lists.

crease in performance when increasing the combined size for
the FELs or event lists beyond around 2 GiB, e.g., from an
event rate of about 3.2× 107 events per second at 2 GiB to
fewer than 2.0 × 107 events per second at 3.2 GiB (cf. Fig-
ure 18). The substantial drop-off in performance beyond
specific overall allocation sizes given highly scattered mem-
ory accesses seems to be due to details of the translation
lookaside buffer implementation of current NVIDIA cards4.
Potentially, an alternative list implementation may reduce
this effect. Our future work includes a systematic compari-
son of FEL or event list implementations on the GPU.

Inter-GPU communication: Since our focus is on models
associated with fine-grained events, we minimize data trans-
fers between host and graphics memory by executing the
simulation on a single GPU, achieving PHOLD event rates
of up to 8.14×107 events per second. The highest PHOLD
event rates events rates we are aware of have been reported
by Barnes et al. [3]. For similar PHOLD parametrizations
to our experiments, event rates were between one and two
magnitudes larger than those reported by us. However, these
results were achieved on a system with 32 768 CPU cores,
in contrast to the single GPU used in our experiments. For
larger PHOLD instances and when parametrizing PHOLD
so that communication is reduced, up to 5.04×1011 events
per second were reported by Barnes et al. on a system using
about 2 million CPU cores. To enable GPU-based simula-
tions at larger scale, future work could explore whether some
of the benefits of fully GPU-based simulation can be main-
tained while applying multiple GPUs using direct inter-GPU
communication and synchronization.

Real-world models: Finally, a general open issue in fully
GPU-based simulation is the viability of the approach to ex-
ecute models of the complexity found in widely used CPU-
based simulators. Although the considered peer-to-peer net-
work model goes beyond the simplistic assumptions in the
PHOLD model, many realistic models may be comprised of
events whose costs due to branching and memory accesses
dwarf the gains through parallelization in the GPU context.
Hence, feasibility studies are required before more compre-
hensive porting efforts are undertaken.

8. CONCLUSION
The proposed fully GPU-based implementation of Time

Warp achieves average event rates of up to 81.4 million
events per second on a commodity GPU. Our evaluation
shows that the optimistic synchronization substantially out-
performs conservative synchronization in nearly all consid-

4https://devtalk.nvidia.com/default/topic/
878455/cuda-programming-and-performance/
gtx750ti-and-buffers-gt-1gb-on-win7/1
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ered scenarios, by a maximum factor of 3.6. In particular,
optimistic synchronization improves the viability of GPU-
based simulation for models with comparatively low event
density. Due to a reduction in costly accesses to graphics
memory, reverse computation outperformed rollbacks based
on state saving by a factor of up to 1.3. Further, autotun-
ing at runtime successfully approximates the performance
achieved with optimal simulator parameter combinations.

We consider evaluations of the suitability of different re-
alistic model types for execution using a fully GPU-based
simulator the most pressing issue for future work. We hope
that the publicly available simulator code will be used by
the community to further explore the possibilities and limi-
tations of fully GPU-based discrete-event simulation.
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APPENDIX
A. ROLLBACKS WHEN MERGING LPS

Figure 19 illustrates a situation where merging without a
prior rollback leads to an incorrect result: since the earli-
est future event of LP 0 has a timestamp of 16 and LP 1
has already executed an event at timestamp 18, two past
events with timestamps 17 and 18 are placed before the fu-
ture event at timestamp 16. Such violations can be avoided
by a rollback that ensures that no LP has past events with
timestamps greater than or equal to the next future event of
the respective other LP. The above describes the minimum
requirement for rollbacks before merging. In our implemen-
tation, since the LP size is only changed infrequently, all LPs
are simply rolled back to the GVT before merging. Finally,
two lists are merged by iteratively selecting the event with
the earliest timestamp and lowest originating LP from the
two lists. Since all past events in the event lists are rolled
back, the state lists and antimessage lists are empty and can
be merged simply by adjusting their offsets in memory.

Figure 19: Invalid ordering of list entries when omitting
rollback before merging.

B. REVERSAL OF XORWOW IN CUDA
Listing 1 shows the forward random number generator

code for XORWOW in CUDA 7.5.
Reversing d is straightforward: d is simply decremented

by the constant 362437. Reversal of v[1] through v[4] is
achieved by assigning the current value with the next smaller
index, i.e., v′[i] = v[i − 1] with i ∈ {1, 2, 3, 4}. To reverse
v[0], we start with the last occurrence of t in Listing 1:

v[4] = v′[4]⊕ (v′[4] << 4)⊕ t⊕ (t << 1)

where v′[4] denotes the old value of v[4] and ⊕ denotes the
XOR operation. Since the old value of v[4] is the new value

Listing 1: Implementation of XORWOW in the NVIDIA
CUDA Toolkit 7.5 (curand_kernel.h).

unsigned in t
curand (curandStateXORWOW t ∗ s t a t e ) {

unsigned in t t = ( state−>v [ 0 ] ˆ
( s tate−>v [ 0 ] >> 2 ) ) ;

s tate−>v [ 0 ] = state−>v [ 1 ] ;
s ta te−>v [ 1 ] = state−>v [ 2 ] ;
s ta te−>v [ 2 ] = state−>v [ 3 ] ;
s ta te−>v [ 3 ] = state−>v [ 4 ] ;
s ta te−>v [ 4 ] = ( s tate−>v [ 4 ] ˆ

( s tate−>v [ 4 ] << 4) ) ˆ
( t ˆ ( t << 1 ) ) ;

s tate−>d += 362437;
re turn state−>v [ 4 ] + state−>d ; }

of v[3], we replace v′[4] with v[3]:

v[4] = v[3]⊕ (v[3] << 4)⊕ t⊕ (t << 1)

Thus, we have:

t⊕ (t << 1) = v[4]⊕ v[3]⊕ (v[3] << 4)

We define r := t⊕ (t << 1) and let ri denote the i-th bit
of r and let ti denote the i-th bit of t. Then, we have:

ri = ti ⊕ ti+1, i ∈ {1, 2, . . . , 31}
r32 = t32 ⊕ 0 = t32

The bits of t can be calculated as follows:

t32 = r32
t31 = r31 ⊕ t32 = r31 ⊕ r32
t30 = r30 ⊕ t31 = r30 ⊕ r31 ⊕ r32

. . .
t1 = r1 ⊕ t2 = r1 ⊕ r2 ⊕ r3 ⊕ . . .⊕ r32

Let vi denote the i-th bit of v’[0], the old value of v[0]. We
have: t1 = v1 ⊕ 0 = v1; t2 = v2 ⊕ 0 = v2

ti = vi ⊕ vi−2; i ∈ {3, 4, . . . , 32}
Finally, the bits of v′[0] can be calculated as follows:

v1 = t1; v2 = t2
v3 = v1 ⊕ t3 = t1 ⊕ t3
v4 = v2 ⊕ t4 = t2 ⊕ t4
v5 = v3 ⊕ t5 = t1 ⊕ t3 ⊕ t5
v6 = v4 ⊕ t6 = t2 ⊕ t4 ⊕ t6
. . .

v31 = v29 ⊕ t31 = t1 ⊕ t3 ⊕ t5 ⊕ . . .⊕ t31
v32 = v30 ⊕ t32 = t2 ⊕ t4 ⊕ t6 ⊕ . . .⊕ t32

Listing 2 shows our CUDA implementation of the reversal.

Listing 2: CUDA implementation of the reversal func-
tion for XORWOW.

d e v i c e void
curand reve r s e (curandStateXORWOW t ∗ s t a t e ) {

unsigned in t r = state−>v [ 4 ] ˆ
s tate−>v [ 3 ] ˆ ( s tate−>v [ 3 ] << 4 ) ;

unsigned in t t = 0 ;
f o r ( i n t i = 0 ; i < 32 ; i++) {

t = t ˆ r ; r = r << 1 ;
}
unsigned in t v0 = 0 ;
f o r ( i n t i = 0 ; i < 32 ; i += 2) {

v0 = v0 ˆ t ; t = t >> 2 ;
}
s tate−>v [ 4 ] = state−>v [ 3 ] ;
s tate−>v [ 3 ] = state−>v [ 2 ] ;
s tate−>v [ 2 ] = state−>v [ 1 ] ;
s tate−>v [ 1 ] = state−>v [ 0 ] ;
s tate−>v [ 0 ] = v0 ;
s tate−>d −= 362437; }
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