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Abstract—Flooding Peer-to-Peer (P2P) networks form the basis
of services such as the electronic currency system Bitcoin.
The decentralized architecture enables robustness against fail-
ure. However, knowledge of the network’s topology can allow
adversaries to attack specific peers in order to, e.g., isolate
certain peers or even partition the network. Knowledge of the
topology might be gained by observing the flooding process,
which is inherently possible in such networks, and performing a
timing analysis on the observations. In this paper we present a
timing analysis method that targets flooding P2P networks and
show its theoretical and practical feasibility. A validation in the
real-world Bitcoin network proves the possibility of inferring
network links of actively participating peers with substantial
precision and recall (both ∼ 40 %), potentially enabling attacks
on the network. Additionally, we analyze the countermeasure of
trickling and quantify the tradeoff between the effectiveness of
the countermeasure and the expected performance penalty. The
analysis shows that inappropriate parametrization can actually
facilitate inference attacks.

I. INTRODUCTION

A number of today’s highly distributed internet services
employ public Peer-to-Peer (P2P) networks as their main
communication infrastructure. One of the challenges in P2P
networks is the robustness against failure and adversarial
attacks. The network’s topology can be the key to both prevent-
ing service disruptions as well as performing successful attacks
on the network. From an attacker’s point of view, knowing the
topology of a network can be advantageous, for example if the
attacker wants to split the network by performing Denial-of-
Service attacks on selected network nodes. Additionally, the
anonymity of users might be an application’s goal (e.g., Tor),
which can be compromised if an attacker is able to reconstruct
communication paths.

The electronic currency system Bitcoin [14] uses a P2P net-
work to transmit information on financial transactions through
the network in order to reach consensus among all participants
on the set of accepted transactions. Information exchange
is performed using a gossip protocol: if a peer receives a
new transaction, it checks the validity of the transaction and
rebroadcasts it to its neighboring peers. An attacker could
observe this information propagation process in the network
in order to infer connections in the P2P network or link
transactions to the originating IP address. This knowledge
could be used to perform precise attacks on the network’s
topology (e.g., eclipsing attack [7], [9]) or as a basis for
deanonymization of users.

In this paper, we present a timing analysis method for
inferring a flooding network’s topology using information
obtained by observing the flooding process. In addition, we
apply this method in a proof of concept to the real Bitcoin
network. First, the proposed method is applied on the basis
of an analytical information propagation delay model and
validated via simulations. Additionally, the tradeoff between
the effectiveness and the performance penalty for the trickling
countermeasure (i.e., deliberately delaying the forwarding of
messages) is quantified. For the real-world validation, the pro-
posed method is then applied using an (empirical) information
propagation delay model of the Bitcoin P2P network.

The theoretical and practical contributions of this paper are
as follows:
• A network topology inference method using an analytical

model for information propagation delay in flooding
networks as a basis; validated in simulation.

• A quantification of the generally existing tradeoff be-
tween effectiveness and performance penalty for trickling.

• A proof of concept of the proposed approach in the real
network based on an empirical information propagation
delay model of the real-world Bitcoin P2P network.

Although this work has a focus on the Bitcoin network, it is
applicable to a wide range of flooding P2P networks including
many blockchain based systems [5]. We assume that messages
are flooded through the whole network and that each message
is uniquely identifiable by all peers. We also assume an open
network, i.e., each peer is able to connect to arbitrary peers
of the network and receives the propagated information from
the connected network peers.

II. RELATED WORK

Several previous works aim at extracting information on
connections between peers in the Bitcoin P2P network. Coin-
scope [12] uses a client implementation specific behavior to
extract the topology of the network. The Bitcoin protocol
allows asking peers for IP addresses of other peers in order to
establish connections to these addresses. The reference client
used to leaked information on neighboring peers by setting
the LASTSEEN field in responses to a specific value, if a
connection to that peer existed. This leak was removed by
March 20151, making this technique not feasible anymore.

1https://github.com/bitcoin/bitcoin/commit/9c2737901b5203f267d21d728
019d64b46f1d9f3



Another approach is to announce made up marker IP addresses
to other peers in order to infer connections. [4]. Additionally,
a technique to identify non-listening peers (e.g., peers behind
NATs) by identifying the set of entry nodes was presented.
Koshy et al. [10] mapped Bitcoin identities (i.e., public keys)
to IP addresses by observing anomalous relaying behavior. All
previous approaches have in common that they either use some
kind of side channel (e.g., the IP address exchange) or rely on
specific, identifiable behavior. The technique presented in this
paper, however, makes use only of information that is inherent
to a flooding network, i.e., the timing of received messages.
Although this paper focuses on the Bitcoin network, numerous
similar applications of flooding P2P networks are possible [5].
It has already been shown that attacks on the network such as
eclipsing single peers [7], [9] or partitioning the network [15]
are possible and information on the network topology can be
crucial.

Timing analysis attacks on anonymity-providing networks
like Tor have been extensively studied. A common attacker
model is the global-passive adversary (GPA, e.g. [13]), which
is able to observe the inter-packet intervals on all links between
nodes of the network. This attacker model is similar to the one
used in this work, as an adversary that participates in a flooding
network receives all messages from all of its neighbors and,
therefore, can reconstruct message flows.

One difference to the assumptions made in our work is that
with onion routing applied, an attacker is not able to link input
packets with output packets, as these appear indistinguishable
to the attacker. Firstly, this prevents our proposed method from
working, secondly, this also allows for other countermeasures.
For example, delaying and reordering the outgoing packets is a
sound countermeasure against timing analysis if the adversary
is not able to link incoming and outgoing packets. Reordering
plaintext messages carrying a unique ID (as in Bitcoin) does
not prevent the linkage of packets. The same goes with dummy
packets that are often proposed for anonymity-providing sys-
tems. When focusing on a single mix only, the mix needs to
delay packets according to a chosen delay function so that an
attacker cannot link incoming packets to their corresponding
outgoing packets. In [6] it was shown that the delay function
should be exponential. The scenario considered in this paper
can be seen as a dual scenario to this single mix case: our
attacker is able to link incoming and outgoing packets, but
there can be several possible delay functions applied to each
stream of data and the attacker has to identify the applied
delay function. The delay function then represents the number
of hops in the network.

III. PROBLEM STATEMENT & PROCEDURE

We will now give the problem statement before describing
the procedure and assumptions in detail.
Given: A flooding P2P network with unknown topology. We
connect to a large share of the network’s reachable peers and
observe the time at which messages are received from each of
the connected network peers.
Sought: The logical topology of the P2P network, i.e., an

answer to the question whether a direct link between any two
peers of the network exists or not.
Procedure: We use a propagation delay model of the network
and compare the observed propagation delay to the expected
delay according to the model, depending on whether a con-
nection exists or not.

We will now discuss several aspects in detail.
Network: We assume a network, which imposes no lim-

itation on the number of connections a peer can maintain.
This implies that a single peer (monitor) controlled by us can
connect to a large share of the network’s reachable peers.
There are likely still peers in the network that the monitor
node is not connected to, however, we restrict the network we
reconstruct to the subgraph containing the peers the monitor
is connected to. Possible countermeasures could prevent this,
e.g., by making the establishment of connections expensive.

Flooding Protocol: The originator of a message broadcasts
the message to its neighbors. The neighbors check upon
reception of a message whether they have already received the
message by checking the message’s unique ID. If a message is
new to a peer, it rebroadcasts the message to its own neighbors,
excluding the peer it received the message from. This way,
the message gets flooded through the whole network. This
protocol represents a very simple and commonly used gossip
protocol, e.g., by Bitcoin.

Observations: The monitor observes the arrival of messages
from all connected peers. For each message, a set of tuples
(reception time, sending peer) is observed – one tuple for
each forwarding peer. Intuitively, the reception times in the
observations caused by one message correlate with the network
topology. However, small reception time differences in two
observations do not automatically imply proximity in the
network topology, as these peers might have received the
message via different paths and coincidentally forwarded the
message at the same time to the monitor. It is crucial to
only use those time differences that arise from peers on the
same transmission path, i.e., time differences with a causal
(sender-receiver) significance, and not from parallel actions.
As a sender-receiver connection exists between the originator
(i.e., the peer that initially broadcasts a message through the
network) of a message and all other peers, our timing analysis
method only uses those time differences. We assume that it
is possible to identify the originator of a message: assuming
an active attacker model, the attacker could create messages
and transmit these messages to one single peer only. This peer
would then rebroadcast the message to its neighbors and, from
our perspective, can be considered as the originator of the
message. Assuming a passive attacker, it is still possible to
statistically guess the originator of a message based on the
observed reception times.

Delay Model: Based on observations, the latency from
our own monitor node to other nodes can be estimated very
well. Latencies between foreign peers can be estimated, e.g.,
based on distance between peers. We are also aware of the
client behavior of the network’s peers, i.e., whether they
instantaneously rebroadcast messages or apply some kind of



trickling mechanism that reduces the sending rate.
In this paper, two delay models and two methods for

comparing the observation to the model are used: in Section IV
we apply a Maximum Likelihood Estimation for comparison,
whereas in Section V a hypothesis testing approach is used.
An analytical propagation delay model (see Appendix) is used
for the analysis of the trickling countermeasure in Section IV,
and a simulation-based delay model is used for the real-world
validation in Section V.

IV. TOPOLOGY INFERENCE MODEL
FOR FLOODING P2P NETWORKS

We will now show how to infer the topology of a network
based on the comparison of observations of the information
propagation delay in the network and a propagation delay
model. For this, we will first formalize the problem considered
before the approach is presented and validated. Finally, limits
of the approach are shown and the trickling countermeasure
is discussed.

A. Formalization as a Classification Problem

Every time a message is forwarded to an attacker’s monitor,
a tuple (reception time tr, sending peer v) is created at the
monitor. Therefore, for each unique message m, the attacker
observes a set of tuples Om = {(tr0, v0), (tr1, v1), ...}. As
we assumed the attacker to be aware of the latency from
the monitor node to other peers, the attacker can subtract
this latency from the reception time and get an estimate of
the sending time: O′m = {(t0, v0), (t1, v1), ...}, where the
first tuple (t0, v0) represents the message’s sending by the
originator (v0) of the message.

We convert the absolute timestamps of O′m to time differ-
ences relative to the creation time t0 (δ1 = t1 − t0, δ2 =
t2 − t0, ...). Each of these time differences δi is a sample
of the delay between the originator of the message and the
peer vi, which forwarded the message to the attacker’s peer.
Grouping all time differences of all messages by these two
peers results in a set of measured delays for each pair of peers
∆v1,v2 = {δ1, δ2, ...}. The set contains one time difference for
each message that was created by v1 or v2. Therefore, the set
is empty for all pairs of peers both of which did not create a
message during the observation period.

We will now focus on how to estimate the shortest path
length Cmin between two peers in the network (i.e., the
shortest sequence of edges between both peers) based on the
observations made.

B. Inferring the Shortest Path Length

The following estimation compares the observations made
to the analytical propagation delay model described in depth
in the Appendix. Here, we will only depict the parameters
of the model and how it can be used. The parameters of the
modeled network are the number of peers and the probability
of existence of each possible connection. The network in our
delay model is assumed to match a random graph model [8].

Using the model, we can calculate the a priori probability
that the shortest path Cmin between two randomly chosen

peers has length l (i.e., P (Cmin = l)). The discrete random
variable D models the propagation delay between two ran-
domly chosen peers (discretized to e.g. milliseconds2). The
model enables us to calculate the probability of observing
a specific delay δ: P (D = δ). It also allows calculation of
the probability of observing a specific delay δ assuming that
the shortest path length between sender and receiver equals l:
P (D = δ|Cmin = l).

We are now looking for a method to assess how likely it
is to observe a specific set of time differences, depending on
the shortest path length between the two observed peers. A
relationship between the unknown shortest path length Cmin
and the observed time difference δ is given by P (D =
δ|Cmin = l).3 Evaluation of this formula for each possible
shortest path length and all observations allows a comparison
between the resulting probabilities and lets us decide, which
shortest path length has the maximum likelihood.

The likelihood function for a set of observed time differ-
ences ∆v1,v2 and a length of the shortest paths l follows from
the definition of a likelihood function as

L(Cmin = l|∆v1,v2) =

P (Cmin = l) ·
∏

δ∈∆v1,v2

P (D = δ|Cmin = l).

The maximum likelihood estimation of the shortest path
length between v1 and v2 is computed by selecting the largest
likelihood among all shortest path lengths, resulting in

l̂ = arg max
l

L(Cmin = l|∆v1,v2).

For an asymptotically large number of observations, l̂ con-
verges to the real value of Cmin. However, the estimated
shortest path length can differ from the real shortest path
length, if, for instance, the observation contains only a few
values and many of them are outliers. Therefore, some measure
of confidence in the guess is required. The quotient of the
likelihood function of l̂ and the sum of all likelihood functions
gives the probability that the guess is in fact correct (certainty)

P (Cmin = l̂|∆v1,v2) =
L(Cmin = l̂|∆v1,v2)∑
l L(Cmin = l|∆v1,v2)

. (1)

Actually, this equation can be calculated not only for
Cmin = l̂, but also for all other values of Cmin, denoting the
probability that each Cmin is in fact correct. This corresponds
to assigning probabilities to each shortest path length.4

2Although a delay could be modeled as a continuous random variable,
we opt for a discrete model to enhance readability and closely match our
simulation model.

3This problem can be formulated as a very simple Hidden Markov Model
(HMM): Each hidden state represents one minimum path length Cmin

between two peers in the network. The observable states of the HMM are
the time differences δ. The transition probabilities from each hidden state l to
the observable states equal the probability of observing a delay of δ assuming
a minimum path length of l: P (D = δ|Cmin = l).

4The shortest path length Cmin can also be seen as a probabilistic infor-
mation source, which outputs l with a probability of P (Cmin = l|∆v1,v2 ).
The entropy of this information source then equals the uncertainty in the
estimation. The difference P (Cmin = l) − P (Cmin = l|∆v1,v2 ) is an
upper bound for the information content of the observation ∆v1,v2 .
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Fig. 1. Precision and recall in a simulated network wrt. the number of
observations per pair of peers.

C. Validation

We will now show the effectiveness of the proposed timing
analysis by examining the resulting error rates. A flooding
network was simulated that generated the observations as input
for the timing analysis. The timing analysis resulted in a guess
which edges of the network exist. By comparing the estimate
to the simulated network, we can judge the quality of the
proposed technique.

The estimation can lead to two kind of errors: false positives
and false negatives. A false positive occurs if a specific edge is
postulated although it does not exist. A false negative occurs,
if an existing edge is not detected by the analysis. Obviously,
the more observations are in ∆v1,v2 , the less likely are both
kinds of errors, as each observation originates from the correct
distribution.

Commonly used measures for the quality of classifiers are
precision and recall. Precision is defined as the number of true
positives divided by the sum of true and false positives (i.e.,
all detected elements). Recall is defined as the number of true
positives divided by the total number of relevant elements (i.e.,
the number of elements that should have been detected). Fig. 1
shows how precision and recall increase with the number of
observations in the simulation performed. Additionally, the
calculated expected recall is depicted. The recall converges
quickly to 100 %, whereas the precision rises much slower
and reaches 90 % after 12 observations. Both, expected and
experimental recall match very well.

Although the error rates look extremely promising, it should
be noted that the simulation experiment makes some idealized
assumptions that cannot be matched in the real world: firstly,
the delay distribution as assumed by the attacker equals the
real delay distribution used in the simulation. In reality, an
adversary has to estimate the delay distribution, which will
only be an approximation. Additionally, the network and the
delay distribution is static in the simulation, whereas churn and
jitter are known to occur in real-world networks. We will leave
a sensitivity analysis of the delay distribution estimation used
by the adversary as future work and give a proof of concept
of the proposed method in the real Bitcoin P2P network in
Section V.

D. Limits & Countermeasures

As just shown, there exists a relationship between the
number of observations and the quality of the estimation.
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- Scenario: 6, 000 nodes, 16 connections per node on average, single-hop
latency distribution according to a normal distribution (µ = 200 ms, σ =
100 ms).

Intuitively, the shape and especially the overlap of the con-
ditional delay distributions for each shortest path length also
affect the estimation’s quality: highly overlapping delay dis-
tributions impede correct estimations, whereas observations
from non-overlapping distributions are easy to map to shortest
path lengths. We will first illustrate this relationship before
analyzing the effectiveness and tradeoffs of a countermeasure
against timing analysis.

Fig. 2 shows the probabilities P (D = δ|Cmin = l) depend-
ing on the observed time difference δ for Cmin ∈ {1, 2, 3, 4}
for a given scenario. Additionally, the certainty, as calculated
by Equation 1, of such an observation is shown. It can be
seen that observing small time differences (below 200 ms)
leads to the highest certainty, because of the fact that these
delays result from Cmin = 1 with overwhelming probability.
As the conditional probabilities overlap between 200 ms and
600 ms, such observations do not help much in reconstructing
the network, as various minimum path lengths are almost
equally likely. For delay differences higher than 600 ms the
certainty rises again. However, this is only because of the
limited considered shortest path length of 4 for this calculation.
Larger shortest path lengths result in transition probabilities
similar to Cmin = 4 but slightly shifted (the difference
between Cmin = 3 and Cmin = 4). We will exploit the fact
that small delays cause a higher certainty in the real-world
validation in Section V.

A common countermeasure against timing analysis is delib-
erately delaying the forwarding of messages (trickling) instead
of instantaneously rebroadcasting all messages (e.g., used in
Bitcoin). The idea is to increase the overlap in the conditional
delay distributions, which reduces the certainty and hinders
the adversary from reconstructing the network. However, this
also increases the overall information propagation delay in
the network, which is not desirable for most applications,
for example Bitcoin, where reaching consistency is the main
purpose of the network.

The existence of a general tradeoff between traffic analysis
resistance, performance, resistance to catastrophic DoS and
bandwidth cost has already been identified in [1]. We will
now apply the propagation delay model and the timing analysis
technique presented in order to quantify the tradeoff between
traffic analysis resistance in terms of precision and recall, and
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performance in terms of consistency delay, i.e., the delay until
a message has been flooded through a certain share of the
network. We assume that the analyzing adversary is aware of
the fact that trickling is performed and how it is parametrized.

Fig. 3 illustrates the effect of applying the trickling coun-
termeasure on the consistency delay and the precision and
recall of an adversary for our exemplary scenario. Precision
and recall are combined into the F1-Score, which is a common
measure of accuracy and is calculated as F1 = 2·precision·recall

precision+recall .
A perfect predictor results in F1 = 1, whereas worse predictors
result in smaller F1-Scores. In Fig. 3 trickling is performed by
randomly delaying the redistribution of messages for a certain
length of time according to a) a uniform distribution and b) an
exponential distribution. Both distributions were parametrized
with a set of mean values: at µ = 0, effectively no trickling
happens, therefore, the result corresponds to what has been
shown in Fig. 1. With increasing mean values, both the time
until information is propagated to 90 % of peers, as well as
the F1-Score increases. Only for higher delays, the F1-Score
starts to decline.

Although one might expect trickling to always have a
positive effect on traffic analysis resistance, the results show
that trickling, if inappropriately parametrized, can actually
reduce the resistance to traffic analysis, i.e., it can improve
an attacker’s precision and recall. This is caused by trickling’s
negative effect on propagation speed. Its goal is to increase
the overlap of the transition probability distributions. On the
one hand, trickling broadens the shape of the conditional delay
distribution, on the other hand it also increases the difference
between the mean of the different distributions. For example,
a constant trickling distribution that delays all packets by
one second makes it much easier for an attacker to guess
the packet’s hop-count, as the constant delay only increases
the gap between the different conditional probabilities, but
does not broaden each distribution’s shape. Fig. 3 also shows
that trickling according to an exponential distribution can in-
crease the timing analysis resistance if properly parametrized,
whereas trickling with a uniform distribution has a negative
effect for the parameters considered.

Please note that although trickling may be detrimental for
preventing timing analysis, it also can have positive effects on
the timing analysis resistance that were not discussed here.

For example, trickling makes it substantially harder for an
attacker to identify the originator of a message in the network.
The attacker cannot decide whether the peer it received the
message from first created the message or just relayed the
message. An attacker can, however, either statistically guess
or use an active approach where the attacker creates messages
and transmits them to one single peer only.

V. PROOF OF CONCEPT: BITCOIN NETWORK TIMING
ANALYSIS

We already showed that the proposed timing analysis
method is feasible in theory and simulation under idealized
conditions. In order to analyze its real-world feasibility, we
will now apply the proposed method to the Bitcoin P2P
network. After introducing the fundamentals of Bitcoin, a
mapping between the proposed models and the Bitcoin sce-
nario will be established, e.g., by parametrization. Finally, the
results of a real-world ground truth validation are presented.

A. Fundamentals: Bitcoin Protocol

The Bitcoin network is a peer-to-peer network [14] currently
consisting of 5,500-7,000 (depending on source) reachable and
an unknown number of non-reachable unique peers. The main
purpose of the network is to broadcast blocks and transactions
through the network. A transaction transfers bitcoins from
one or more source addresses to one or more destination
addresses. In order to create a transaction, a user has to sign
the transaction with the private key corresponding to the source
address. A block is formed in the process of mining and
contains a set of transactions. We omit the details of mining
and transactions here, but emphasize that the P2P network
floods blocks and transactions through the network in order to
reach consistency.

Flooding is implemented as a three-step process: peers that
receive a new transaction or block announce the hash value
of that object, which serves as an identifier, to their neighbors
using an inventory (INV) message. The informed neighbors
check whether they have already received the announced
object, and can request it using a GETDATA message. The
transaction or block is then sent using a TX or BLOCK
message, respectively. In order to perform a timing analysis, a
peer connects to a large number of other peers and monitors
the reception of INV messages. This peer does not need to
request the data objects itself and it should not send INV
messages to neighboring peers, because peers keep track of
which data objects their neighbors already have and do not
issue INV messages to peers that already have the data object
in question [7].

B. Bitcoin Network Model

The Bitcoin network protocol matches our definition of a
flooding protocol from Section III. For parametrization, we
need to approximate three distributions:
1) Network Latency Distribution: For the analytical model
we assumed that the network delay between all peers in the
network follows one single, known latency distribution. In
the Bitcoin network, peers are geographically distributed and
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connected through links of various, unknown, qualities. Hence,
for each pair of peers a latency estimate based on known
parameters is required.
2) Client Delay Distribution: For the analytical model we
assumed that clients immediately forward messages without
accounting for any possible delay, e.g., due to computation
time. The Bitcoin reference client bitcoind5, which is used
by the vast majority of peers, delays rebroadcasting due to the
polling software architecture as well as due to trickling, which
randomly delays forwarding and tries to protect privacy, as the
source code comment says.6

3) Node Degree Distribution: For the analytical model we
assumed a random graph network model. As previous studies
have shown [12], the node degree distribution is much more
heavy-tailed.

We will now discuss how each of the distributions has been
modeled and how the resulting distribution looks.

1) Network Latency Distribution: It is easy to measure
the latency distribution from one location to other peers, but
much harder to estimate the latency between two foreign
peers. Approaches like iPlane [11] provide a latency estimate
by modeling the Internet’s connection structure. However,
predictions were only possible for a subset of IP addresses
that participated in the Bitcoin P2P network. Additionally,
iPlane only estimates a mean latency and not a latency
distribution. Therefore, we estimated the latency distribution
between foreign peers based on our own measurements and
the geographical distance between these peers.

We used a measurement node that establishes connections
to network peers by connecting to announced IP addresses and
monitors the latency to these peers. The latency is measured
using ICMP pings or TCP SYN pings for those hosts that do
not respond to ICMP messages.7

The ICMP/SYN ping measurements result in a precise esti-
mate of the network latency distribution from our monitor node
to each connected network peer. This estimate can be used
to estimate the sending time of messages from the reception
times (cf. Section IV). Figure 4 shows the observed delay
distribution from the monitor node to all peers broken down by

5https://github.com/bitcoin/bitcoin
6https://github.com/bitcoin/bitcoin/blob/dd1304ec216c7d4bdb302195e184b

15503819f67/src/main.cpp#L5543
7A TCP SYN packet is sent to a host and the time until either a RST or a

SYN/ACK packet is received is measured as a round-trip time. This method
is commonly used by network scanners, such as nmap, for example.
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the geographical distance to the remote peer. The correlation
between the distance between peers and the resulting latency
distribution can be clearly seen from the plot. Therefore, we
chose to estimate the latency between two foreign peers solely
on the distance between them. The distance between peers can
be easily calculated after obtaining the location of the peer
based on its IP address using the Maxmind GeoIP Database.8

Although errors in the localization may occur, the sensitivity
of our approach to such errors is very low.

We acknowledge that this model has certain limitations: the
model does not account for latency introduced by temporal
behavior such as link saturation. It also cannot make any
statements on the connection quality between the specific
user and its ISP, as the empirical model relies solely on
the distance. Furthermore, the distance between two peers on
the earth’s surface may not reflect the routed distance, e.g.,
through submarine optic fiber cables.

2) Client Delay Distribution: We define the time between
the reception of a message and the forwarding of the message
to its peers as the client delay. These delays can be uninten-
tional, such as computation delays or delays introduced by
blocking behavior of the software architecture. However, the
client may also intentionally delay forwarding of messages
in order to impede timing analysis or reduce network load.
We will first model these unintentional delays empirically
and model the intentionally introduced delays in the Bitcoin
network analytically.

For the empirical model of the unintentional client delays
we leverage the possibility of sending two different types
of ping messages to peers: those that are processed by the
operating system’s network stack (ICMP and SYN as used
above) and those that are processed by the application code
(Bitcoin protocol PING). Although processing by the operat-
ing system can be severely delayed, it usually takes only a
negligible amount of time in the microsecond range [3]. By
subtracting the averaged network latency from the observed
delay for answering a Bitcoin PING, we receive an estimate
of the application’s processing delay.

Fig. 5 shows the observed unintentional client delay distri-
butions for clients using one of two selected client versions.
Whereas the older client version (0.10.2) employs a blocking
message processing architecture with a fixed 100 ms sleep,
the newer version (0.11.2) uses an event driven message
processing that minimizes delays. Our delay estimates clearly
reflect these changes; especially the behavior of the older

8http://dev.maxmind.com/geoip/



version is correctly modeled with a uniform delay distribution
between 0 and 100 ms. Please note that although most delays
are less than 100 ms, a substantial number of much longer
delays were observed: More than 7.5 % of all delays were
longer than one second, 2.6 % of all delays were even longer
than 10 seconds.

Two different causes for these very long delays could be
identified: on the one hand, there are peers that constantly
have a very high client delay (i.e., more than 1 second). These
peers are probably permanently overloaded. On the other hand,
there are peers that exhibit small client delays in most cases,
but long delays for a few measurements only. These peers are
probably only temporarily busy, e.g., they could be verifying
a block at this particular point in time. In order to model
this dependency, we use our measurements to generate one
client delay distribution per peer instead of one single averaged
distribution for all peers.

The Bitcoin reference client implements a trickle mecha-
nism to intentionally delay the forwarding of INV messages to
neighboring peers. The following description of the trickling
mechanism applies to version 0.10.x. We will later discuss
changes to current versions. Upon reception of a transaction,
the client randomly decides whether to apply trickling on this
transaction. Trickling is performed for 75 % of all transactions,
25 % of all transactions are immediately forwarded. Transac-
tions that were not immediately forwarded to all neighboring
peers are forwarded to one neighbor at a time during each of
the following message processing cycles, which are executed
every 100 ms. With the source code changes in version 0.11.x,
the fixed 100 ms interval vanished, effectively increasing the
number of processing cycles and, therefore, accelerating mes-
sage forwarding even with trickling. As of version 0.12.x, this
behavior was changed again so that trickling is performed on
a per-host basis with a Poisson distribution.9 As this version
was released after the experiments were performed, we did
not model it here but emphasize, that the changed trickling
mechanism can be modeled as shown and does not invalidate
this timing analysis (cf. Section IV-D).

3) Node Degree Distribution: Although most Bitcoin
network peers maintain a relatively small number of con-
nections, some peers maintain an extremely large number of
connections [12]. This node degree distribution not only affects
the a priori probabilities required for the timing analysis (cf.
Section IV), but also the overall propagation speed in the
network. For instance, a single peer that is connected to all
other peers in the network may substantially increase the prop-
agation speed of flooded messages. The proposed inference
approach could show the real node degree distribution to us,
however, we require the distribution in order to perform the
inference in the first place.

In order to approximate the node degree distribution in
the Bitcoin network, we simulated the network and compared
the information propagation as observed in the real network

9https://github.com/bitcoin/bitcoin/commit/5400ef6bcb9d243b2b21697775
aa6491115420f3#diff-7ec3c68a81efff79b6ca22ac1f1eabba

0

0.005

0.01

0 1000 2000 3000#R
ec

ei
ve

d
I
N
V

pe
r

m
s

(n
or

m
al

iz
ed

to
1
T
X

)

Time since propagation / Delay [ms]

0

1

2

3

1-Hop (Simulated)
1-Hop (Measured)

Overall (Simulated)
Overall (Measured)

Fig. 6. Comparison between measured and simulated INV propagation delay
as histogram data; limited to direct neighbors of originating peer (bottom) and
for the complete network (top). Both networks parametrized with γ = −2.3.
Normalization: shown values correspond to the creation of one transaction.

to the simulated information propagation. Minimizing the
deviation (i.e., the squared error sum) between these two
information propagation delay distributions for different node
degree distributions results in an approximation of the correct
parametrization.

Known parameters are the number of reachable peers, their
geographical distances from each other and, therefore, an
estimate of their latencies, the distribution of client delays and
the assumed behavior of all clients. Unknown parameters are
the node degree distribution and the number of non-reachable
nodes that are connected to reachable nodes. What is also
unknown is the number of peers with anomalous behavior
and this behavior itself. An example of such behavior is
the BitcoinRelayNetwork10, which transmits transactions and
blocks in one step instead of relying on the three-step protocol
described earlier.

In order to determine these unknown parameters, we first
approximated the node degree distribution of the reachable
nodes: we generated transactions in the real Bitcoin network
and observed how fast the transactions were relayed by the
neighbors of the generating peer. As the generating peer was
controlled by us, we knew the neighboring peers, which were
randomly chosen from all network peers. The measured prop-
agation delay is independent of the number of non-reachable
nodes and only depends on the node degree distributions of
the neighboring peers, which affects the trickling mechanism.

As many similar networks were shown to resemble a scale
free network [2] and previous data [12] also supports this
assumption, we assume that the node degree distribution
follows a power law: P (k) ∼ k−γ . However, as the client
is configured to establish eight outbound connections, we
modified the minimum node degree to be eight as well, while
scaling the node degrees for eight or more connections.

The bottom part of Fig. 6 shows the measured propagation
delay distribution between the creation time of a transaction
and the reception of the corresponding INV messages by
our monitor node from the neighbors of the originator of

10http://bitcoinrelaynetwork.org



the transaction (1-Hop). Additionally, the simulated delay
distribution for the same number of reachable peers and a
node degree distribution following the adapted power law
parametrized with γ = −2.3 is shown. Various values for
the parameter γ were simulated with γ = −2.3 resulting in
the smallest deviation between measurements and simulation,
i.e., showing the least square error sum between the two
distributions.

In the Bitcoin network there are at least two more known
classes of non-reachable peers: standard clients that maintain
a low number of connections (i.e., 8) and peers that are
specifically used to maintain a high number of connections
and perform fast message forwarding. The first class of peers
could represent a standard user behind a NAT, whereas the
second class of peers could be run by a mining pool, for
example. We added peers of these two classes to our model
and, again, varied the parameters (i.e., the number of peers per
class and the number of connections held by the second class
of peers) and compared the simulated information propagation
delay distribution to the measured one. In contrast to the
first measurements, that were restricted to direct neighbors
of the generating peer, the information propagation delay
now covers the complete propagation. Although additional
peers and connections were added to the model, the node
degree distribution of the reachable peers was not affected,
as connections to additional peers substituted already existing
connections in the simulation.

The upper part of Fig. 6 shows the measured propagation
delay distribution of the whole network compared to the
simulated one with 16,000 non-reachable standard peers and
70 non-reachable peers with 200 connections each. Again, we
simulated a broad range of values and the parametrization
shown resulted in the smallest square error sum between mea-
surements and simulation. Although this specific parametriza-
tion represents the information propagation in the real network
well, one cannot draw the conclusion that the real network
consists exactly of these types of peers in these quantities.
It is possible that there are numerous other parametrizations
(including additional peer classes or anomalous behavior)
that also lead to the same information propagation delay
distribution. Probably, the remaining deviation in the overall
propagation delay is also caused by anomalous clients that
were not modeled here.

C. Application to the Real-World Network

We parametrized the timing analysis approach presented in
Section IV with the model of the Bitcoin P2P network and
validated its feasibility in the real network. We will now first
describe how the parametrization was done, before validation
results are shown and discussed.

As the analytical model presented assumes a random graph
model, it cannot be directly used to obtain the required
probabilities P (D = δ|Cmin = l) (i.e., which shortest
path length results in which delay distribution) for the real
network. However, these probabilities can also be obtained
by performing simulations of the network and monitoring not
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only the overall propagation delay (Fig. 6), but the propagation
delay depending on the shortest path length (which is a known
property in the simulation).

In order to perform a ground truth validation, two off-
site peers running bitcoind 0.11.0 with known neighboring
peers (∼ 50) were used to create transactions and initially
broadcast them to the network. Our monitor peer observed
the propagation of transactions through the network. As the
high certainty of observations with small delays has already
been pointed out (cf. Fig 2), we now use an estimation that
focuses on the smallest observed delay only: assuming the
set of time differences for a pair of peers ∆v1,v2 contains
n observations, an edge between the two peers is detected,
iff the theoretical probability (i.e., the probability as derived
from the model) that all n observations are larger than the
smallest observation δmin is higher than a certain threshold s
(P (D > δmin|Cmin = 1)n > s). The threshold represents the
sensitivity of the estimation and affects the false positive and
negative rates.

Fig. 7 shows the resulting precision and recall depending
on the chosen sensitivity and the number of observations for
two different measurements. Each data point corresponds to
one setting of the sensitivity threshold s. Depending on the
analysis’ goal, the threshold can be configured achieve either
a high recall or a high precision. An increasing number of
observations also increases the quality of the estimation up
to about 6 estimations, where no further improvement can be
seen.

With the appropriate sensitivity, the estimation can achieve
a recall of 40 % while maintaining a precision of also about
40 %. This corresponds to an F1-Score of 0.4, which is
substantially lower than the theoretically achievable scores,
however, much better than simply guessing the connections
of a peer, which would result in an F1-Score of 0.0125.
The information gained can be useful for an attacker that
wishes to eclipse certain peers. For instance, an attacker could
choose a sensitivity that leads to a high recall, DDoS the
detected neighbors of a specific peer (many of them can be
false positives) and then repeat the timing analysis in order



to identify remaining neighbors. Even if this attack does not
completely eclipse a peer, it still reduces the propagation speed
and the robustness of the network.

Our data shows that 44 % of peers that were online for at
least one hour publish at least 5 transactions per day, making
a passive attack possible. For the remaining 56 %, actively
inserting transactions as sketched in Section IV-D is required.
Obviously, the network topology changes over time (although
churn among reachable Bitcoin network peers is quite low),
which can also impede a correct analysis.

VI. CONCLUSION

In this paper we presented a timing analysis method for in-
ferring the topology of flooding P2P networks. The real-world
validation in the Bitcoin network showed that the proposed
method can be used to infer network links at a substantial
(∼ 40%) recall and precision. We also showed that the
commonly used trickling mechanism can, if inappropriately
parametrized, actually reduce the resistance to traffic analysis.

The possibility for an attacker to observe the flooding
process is inherent to P2P flooding networks. Therefore, coun-
termeasures against the presented method either reduce the
propagation speed (trickling) or raise the cost of establishing
connections, which also affects legitimate peers negatively.
Future work may include finding an optimal combination
and parametrization of countermeasures depending on the
network’s objectives and the threat model.
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APPENDIX
ANALYTICAL PROPAGATION DELAY MODEL

The proposed timing analysis method infers the number of hops
a message traveled through the network by comparing the observed
delay to the delay that is to be expected for several path lengths.
Therefore, a model for the propagation delay depending on the path
length is required. Given two randomly chosen peers as the sender
and the receiver and their (hop) distance in the network graph, we
want to know the delay distribution between sending and receiving a
message. This analytical approximative model accounts for multi-hop
propagation through the network and can be used to infer how many
hops a specific message took.

We will now introduce the notions used in the propagation model.
The network is represented as a connected and undirected graph G =
(V,E), where V is the set of peers (v ∈ V ) and E is the set of
connections (e ∈ E) between peers. We define x(e) as the random
variable modeling the existence of edge e. We assume a random,
Erdos-Renyi graph network model [8], which means each possible
edge exists independently with a certain probability P (x(e)). We
also assume that the zero-hop delay distribution, represented by the
random variable D1, between peers in the network, is known.

A path R between two peers is a sequence of edges (e1, ..., ec)
connecting the peers with a length of |R| = l. As the graph
is assumed to be connected, at least one path between any two
vertices of the graph exists. We define a class of paths c(l) as the
set of paths with a length of l. The probability of existence of a
certain path in class c(l) is given as pl := P (e)l. Each class is
characterized by a different delay distribution, represented by the
discrete random variable Dl. All random variables in this model are
regarded as discrete random variables. The delay distribution defined
by P (Dl = t) states the probability of receiving a message via a
single, isolated path of length l time t after sending. For now, we
assume that for each class there is a global distribution independent
of the sender and receiver. In this case, each delay distribution
can be calculated by convolution from the zero-hop (l = 1) delay
distribution, which is assumed to be known.

A. Approximative Propagation Delay Model
We will now formulate the analytical propagation delay model and

begin by deriving some basic properties of the network that will be
required later. We define Zl as the maximum possible number of
paths in class c(l) between two peers and zl as the actual number of
paths in class c(l) between two peers. Then Zl is calculated as

Zl =

(
|V | − 2

l − 1

)
· (l − 1)!. (2)



The probability that exactly k paths in a given class c(l) exist can be
approximated using the probability of existence pl for each path by
the binomial distribution as

P (zl = k) ≈

(
Zl

k

)
· pkl · (1− pl)Zl−k. (3)

Please note that the existences of two paths are not statistically
independent. Hence, this formula serves only as an approximation.
For l < 3 the solution is exact. As only short path lengths are of
interest for the proposed timing analysis technique, we accept the
resulting error and leave a more precise model to future work.

Given these basic graph properties, we now focus on the flooding
protocol in order to develop an information propagation delay model.
For now we ignore all but one class c(l). We also ignore the
probability of existence for the paths in this class and assume that
exactly zl = n paths in class c(l) between the sender and receiver
exist. We define D̂l as the random variable modeling the delay
between broadcasting a message over these n paths and the reception
of the first message via any path. There are n paths that can be the
fastest transmitting path. The fastest path has probability P (Dl = t)
of resulting in time t and all other (n−1) paths must be slower than
t, resulting in

P (D̂l = t|zl = n) = P (Dl = t) · P (Dl > t)n−1 · n. (4)

We now take the probability of existence for paths into account and
want to know the latency distribution of the fastest arriving message
over any existing path from a class c(l). For this, we apply the law
of total probability to equation 4:

P (D̂l = t) =

Zl∑
k=1

(P (zl = k) · P (D̂l = t|zl = k))

The distribution defined by P (D̂l = t) equals the delay distribution
of the fastest message that took a path of length l through the network.
However, we are interested in the delay distribution of the fastest
message over any path of any length. Therefore, we will no longer
ignore all classes but one and acknowledge the fact that messages
might be transmitted faster on paths with different lengths. When
choosing one class c(l′), the probability that none of the other classes
results in a delay smaller than t is given by the product of probabilities
of all other classes resulting in a delay larger than t, resulting in

P (D̂l 6=l′ > t) =
∏
k 6=l′

P (D̂k > t).

We now define D as the random variable modeling the overall delay
of the fastest message transmitted over any of the possibly existing
paths. The probability of a transmission resulting in a delay of t is
calculated as the probability that the fastest transmission over a path
of one length results in latency t and no other transmission over any
path of another class results in a smaller latency:

P (D = t) =
∑
k=1

(P (D̂k = t) · P (D̂l 6=k > t)). (5)

With P (D = t), we now have an analytical propagation delay
model. However, for use in the timing analysis, we need to calculate
the propagation delay distribution depending on the shortest path
length Cmin. The minimum path length Cmin between two peers can
be formally specified as Cmin = l ⇔ (zl > 0 ∧ ∀d < l : zd = 0).
For each pair of peers in a connected network, exactly one value for
Cmin exists. Using this definition, we will now adapt Equation 5 to
calculate the probability of observing a time difference δ, depending
on the minimum hop-count l between the two senders. From the
definition of Cmin = l, it follows that no paths shorter than l
exist. Hence the probability of existence for such paths has to be
set to 0 (pi = 0, i < l). Equation 5 uses Equation 3 to calculate the
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probability that exactly k paths exist in a given class c(l). Adapting
Equation 3 to assume that at least one path exists leads to

P (zl = k|zl > 0) =
P (zl = k ∩ zl > 0)

P (zl > 0)
. (6)

Obviously, the numerator equals P (zl = k) for k > 0 and the
denominator is calculated as 1− (1− pl)Zl .

We also need the a priori probability of Cmin as a starting point of
the estimation. Assuming independence, the probability of a shortest
path length of l is calculated as the joint probability that at least one
such path exists and that no shorter path exists, resulting in

P (Cmin = l) = (1− (1− pl)Zl) ·
∏
i<l

(1− pi)Zi . (7)

As discussed before, the formula is only exact for shortest path
lengths smaller than 3. These two adaptions enable us to calculate
P (D = t|Cmin = l).

B. Validation and Limitations
In order to validate the model, we compare the propagation delay

as calculated from the model to the propagation delay measured in
simulations. We consider two exemplary scenarios: Scenario A com-
prises a network with 1,000 peers, an average of 8 connections per
peer and a uniformly distributed latency (D1) between 50 and 100 ms
whereas Scenario B consists of 6,000 peers, each with 16 connections
on average and a latency distribution (D1) between 100 and 300 ms.
The delay distribution for multi-hop transmission (D2, D3, ...) was
calculated by convolution from D1 in both scenarios. Figure 8 shows
the resulting delays for these two scenarios.

It can be seen that during the beginning of the propagation our
model perfectly matches the simulation outcome, whereas a deviation
becomes visible afterward. This deviation is caused by an abstraction
made in the model: we treat two paths between sender and receiver
as independent although the paths may share common hops (i.e., they
may not be vertex-independent). Obviously, this situation can only
occur for paths with a length of three or more, as one hop must be
the joining hop and one hop must differ in order to result in different
paths. We use the model to distinguish between a shortest path length
of 1 and any longer path length. Therefore, a precise modeling of the
propagation’s beginning is required, whereas the further propagation
is not crucial.

Another, more practical, limitation of the presented model can be
imposed by the possible extremely large number of possible paths
Zc, which can reach values of more than 10100 pushing the following
calculation of P (zc = k) against common numerical limits. However,
the use of arithmetic libraries as well as limiting the path length
bypasses these issues. Lastly, the assumption of an ER-graph does
not hold in most real-world networks. We argue, however, that for
some network models an adaption is possible analytically, whereas
for others the use of simulation and fitting techniques allows the
development of practically usable models, which is done in Section V.
The model derived here can be especially useful for theoretically
assessing the timing analysis presented.


