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Spiking neural networks (SNN) are among the most computationally intensive types of simulation models,

with node counts on the order of up to 1011. Currently, there is intensive research into hardware platforms

suitable to support large-scale SNN simulations, whereas several of the most widely used simulators still rely

purely on the execution on CPUs. Enabling the execution of these established simulators on heterogeneous

hardware allows new studies to exploit the many-core hardware prevalent in modern supercomputing envi-

ronments, while still being able to reproduce and compare with results from a vast body of existing literature.

In this article, we propose a transition approach for CPU-based SNN simulators to enable the execution on

heterogeneous hardware (e.g., CPUs, GPUs, and FPGAs), with only limited modifications to an existing simu-

lator code base and without changes to model code. Our approach relies on manual porting of a small number

of core simulator functionalities as found in common SNN simulators, whereas the unmodified model code

is analyzed and transformed automatically. We apply our approach to the well-known simulator NEST and

make a version executable on heterogeneous hardware available to the community. Our measurements show

that at full utilization, a single GPU achieves the performance of about 9 CPU cores. A CPU-GPU co-execution

with load balancing is also demonstrated, which shows better performance compared to CPU-only or GPU-

only execution. Finally, an analytical performance model is proposed to heuristically determine the optimal

parameters to execute the heterogeneous NEST.
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1 INTRODUCTION

Spiking neural networks (SNNs) are artificial neural networks that are used to model and
understand the mammalian brain. Simulations of SNNs often require enormous amounts of com-
putational resources and substantial running times due to the scale and complexity of these net-
works. For example, it takes more than 30 s to execute a single-threaded simulation for 250 ms
of activity in a network of 11, 250 neurons and about 127 million synapses using the NEST sim-
ulator [17]. Meanwhile, a mammalian brain contains in the order of 107 to 1011 neurons, with
thousands of synapses per neuron on average [22]. To tackle the computational demands of large-
scale SNN simulations, many of the existing simulators are designed for parallel execution using
multi-core CPUs in a single-node or multi-node environment. Due to the presence of accelera-
tors, such as graphics processing units (GPUs), in most computers ranging from individual
workstations to the largest supercomputers, this leads to the shift in focus of works on high-
performance SNN simulation towards accelerators in the past few years. Substantial performance
improvements can be achieved in several GPU-enabled SNN simulators over a CPU-based execu-
tion [5, 10, 15, 24, 40, 46, 52]. Typically, relevant segments of the simulator codebase have been
developed manually for separate CPU and GPU variants. While this approach enables better op-
timizations for the target hardware, there are code duplications in the simulator and model for
each hardware platform, which poses significant challenges in terms of maintainability and exten-
sibility. Further, code development on accelerators is widely considered to be more cumbersome
and error-prone than developing only for CPU (e.g., Reference [40]). Thus, it is desirable to min-
imize the need to develop and modify the accelerator code directly. In contrast to the core simu-
lator functionalities, neuron and synapse models may frequently be added, modified, or extended.
Hence, the model development process should be abstracted from the target hardware as much as
possible.

Newly developed simulators can achieve some hardware independence by using a template-
based model specification [52]. However, a transition path is needed for the existing and widely
used SNN simulators such as NEST [17], which targets only CPU execution. Adding support for
the execution on heterogeneous hardware to these simulators allows researchers to conduct new
simulation studies in a timelier manner, while still relying on widely studied and tested simulator
and model implementations. In particular, new studies can easily reproduce previous results from
the literature and benefit from the existing validation results, using the existing configuration
files and tool flows. Moreover, it also enables researchers to better utilize the existing hardware
resources, such as co-execution on both CPU and GPU.

This article presents a semi-automated approach for the transformation of SNN simulators to
enable execution on heterogeneous hardware. While our experiments are executed on CPUs and
GPUs, the transformed simulator can make use of other heterogeneous platforms, such as FPGAs,
and DSPs. However, as demonstrated in Reference [49], more research on targeted algorithms and
data representations might be required to provide good performance. Our main contributions are
as follows:

(1) We analyze the common architecture of CPU-based SNN simulators, differentiating static
components implementing basic simulator functionality, and the portions specifying neu-
ron and synapse models.

(2) We present an approach based on an automated model code transformation to support the
transition from a purely CPU-based simulator codebase to an implementation executable
on heterogeneous hardware. We propose optimizations for synapse models to reduce their
memory consumption.
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(3) We demonstrate our approach on the NEST simulator and present performance measure-
ment results when executing NEST on GPUs. Substantial performance gains are achieved
over a purely CPU-based execution. Our transformation code is publicly available1.

(4) We show CPU-GPU co-execution of NEST along with the performance results. It is pos-
sible to achieve better performance over a purely CPU-based or GPU-based execution by
balancing the workload between CPU and GPU. To provide a heuristic to determine the
optimal parameters for a well-balanced co-execution, we propose analytical performance
models to represent GPU execution and CPU-GPU co-execution.

The present article is an extended version of our previous conference publication [42]. Beyond
the previous results, the benchmark model is described in more detail. Further analysis of the cor-
rectness of the implementation has also been done to compare the spike output patterns between
CPU and GPU executions. The previous work only featured CPU-only and GPU-only executions,
which is extended to CPU-GPU co-execution in this article.

2 BACKGROUND AND RELATED WORK

In this section, we briefly introduce spiking neural networks as well as the simulators for this class
of network. Further, we outline fundamentals and existing work on the execution of spiking neural
network simulations on heterogeneous hardware.

2.1 Spiking Neural Network Models

SNNs [37] are artificial neural networks that are considered to be more biologically accurate repre-
sentations of mammal brains than the more abstract neural network models used by common ma-
chine learning applications. An SNN is a directed graph with so-called integrate-and-fire neurons
as nodes and synapses between two neurons as edges. Integrate-and-fire neurons generate rapid
increases or decreases of their membrane potential, so-called spikes, according to the potential
changes of the incoming synapses. Excitatory neurons trigger a positive change in the membrane
potential while inhibitory neurons trigger a negative change. The spikes are transmitted to the
neighboring neurons across the outgoing synapses, which may increase or decrease the spike’s po-
tential. The main application areas of SNN models are in computational neuroscience, which aims
at understanding the nervous systems, and in machine learning, e.g., in the robotics field [7, 30].

In addition to the network topology, SNNs are characterized by the neuron and synapse models.
Neuron models define neuron state variables and actions on incoming spikes, commonly using dif-
ferential equations. Typically, these equations are solved numerically by time-stepped integration.
Each time step updates a neuron’s state according to the incoming spikes and its current state,
potentially generating outgoing spikes. Synapse models define the way spikes are affected by the
transmission through a synapse.

With static synapse types, each spike’s potential is affected in a constant way as it travels to the
target neuron. In contrast, Spike-timing-dependent plasticity (STDP) models dynamically vary
the current spike’s potential depending on the current synapse state, which may change with each
transmitted spike [41]. An SNN may use several different types of neuron and synapse models.

2.2 SNN Simulators

SNN simulators are programs that execute the network’s activities in the form of neuron and
synapse behaviors over a period of time. Although the local state of each neuron leads to spike
patterns that are usually not synchronous across the network, the synchronous execution of SNN

1https://github.com/opencl-nest/opencl-nest.
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models permits a simple barrier-base parallelization. The simulation state is advanced by updat-
ing each neuron’s state according to the chosen neuron model, which is typically reflected com-
putationally by one time step of numerical integration. The number of integration steps before
synchronization is required (super step), depends on the lookahead, which is a delta in time during
which state changes of a neuron are guaranteed not to affect other neurons, as defined by the
minimum time required for a spike to travel through a synapse. At the end of each super step, syn-
chronization is achieved by exchanging newly generated spikes among the neurons. In parallel and
distributed simulation terminology, this execution scheme is similar to synchronous conservative
synchronization using the YAWNS algorithm [43].

A number of SNN simulators have been proposed in the literature, frequently focusing on scal-
ability to large networks. The number of neurons in the brain of a mammal is on the order of 107

to 1011, with about 1,000 to 10,000 synaptic connections per neuron on average [22]. Thus, the
number of synapses is substantial even in small networks. To support large-scale SNN simulation,
simulators have been developed targeting high-performance computing environments employing
multi-core CPUs and GPUs.

Established simulators such as CARLsim 4 [10], Brian 2 [18], NEURON 7.5 [23], NCS 6 [24],
Nemo 0.7 [15], Nengo 2.6 [5], NEST 2.14, HRLSim [40], and PCSIM 0.5 [44] support multi-threaded
execution on CPUs, some of them with support for execution on multiple nodes. GeNN 3 [52]
can be executed on a single GPU. Some other simulators additionally support the execution in
GPU clusters [5, 10, 10, 15, 24, 40]. Among these simulators, CARLsim 4 and NCS 6 support
a CPU-GPU co-execution. However, they have to write GPU code for the SNN models manu-
ally while our approach utilizes an automatic transition method that requires minimal manual
work.

Several authors have explored the execution of SNN simulations on GPUs independently of
the established simulators (e.g., References [6, 47]). These works share the approach of manual
development and optimization of GPU code. While manually tuned GPU code can provide high
performance, maintenance and extensibility are impacted by the presence of hardware-specific
code or separate CPU and GPU implementations. This issue is exacerbated when considering the
execution on further accelerator types such as FPGAs (e.g., Reference [38]). Among the simulators
supporting GPU-based execution, to our knowledge, GeNN [52] and Brian2GeNN [46] are the
only ones to support automatic GPU code generation. Brian2GeNN transforms Brian 2 models to
GeNN models, and utilize GeNN for GPU code generation. For GeNN, users need to define neuron
models using a C++ interface. The main inputs provided by the user are the model parameter
names and the neuron update rules in the form of C++ statements. A drawback of both hand-
tuned and generated GPU code is the lack of comparability of results to those generated using
the well-tested and well-studied code and models of established simulators. The transformation
approach proposed in our present article enables the use of unmodified models of an existing CPU-
based simulator while reducing the simulation running time using hardware accelerators. While
our experiments are performed on GPUs, the generated OpenCL code enables the execution on
further hardware types such as FPGAs or DSPs.

2.3 Benchmark Network Model

To benchmark the performance of the simulator, existing literature used a balanced random net-
work model with plastic connections [21, 27, 28, 32, 41], which is featured in the hpc_benchmark

scenario. The network consists of two recurrently connected populations: one excitatory and
one inhibitory. Neurons are modeled by single-compartment leaky-integrate-and-fire neurons
with alpha-shaped postsynaptic currents (iaf_psc_alpha neuron model) using homogeneous
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parameters. Each neuron is randomly connected with a fixed number of incoming connec-
tions per neuron (K = 11,250). The excitatory-excitatory connections used the STDP model
(stdp_pl_synapse_hom synapse model), while all other connections are static (static_synapse

synapse model).
The network is driven by random spikes emitted by a Poisson generator (poisson_generator).

Each simulation time step size is 0.1 ms, while the synaptic delay is 1.5 ms. Hence, each superstep
consists of 15 time steps. There is a presimulation time of 50 ms (500 time steps), and the simulation
terminates after 250 ms (2,500 time steps).

This model is scalable as the overall spikes patterns do not change with different network sizes
due to the sparse connections of neurons [9]. In addition, the random network ensures that no local
communication patterns can be exploited. The total number of neurons in the network is controlled
by a scale factor S : N = S × 11,250. A detailed network description and parameter values can be
found in Reference [28].

2.4 Heterogeneous Computing and Graphics Processing Units

In the past two decades, high-performance computing has moved from mostly CPU-based plat-
forms to heterogeneous architectures. While a range of accelerator types have emerged that pro-
vide performance benefits for certain classes of computational problems, GPUs are currently the
dominant hardware type used to supplement CPU-based host systems with resources for mas-
sively data-parallel processing. Of the list of the top 500 supercomputers published in November
2019,2 154 of them are built with GPUs. The benefits of CPU-GPU co-processing or purely GPU-
based execution have been shown for many scientific applications (e.g., References [14, 19, 35]),
including several types of network simulations [1, 2, 50].

In NVIDIA’s terminology, a GPU contains several streaming multiprocessors (SMs) with up
to thousands of arithmetic units in total. This enables a GPU to execute thousands of lightweight
threads in parallel to provide teraflops of computing power. However, the design of efficient GPU
algorithms requires exploiting the GPU’s unique architectural characteristics. The programs to be
executed by the GPU’s threads are referred to as kernels. On current NVIDIA GPUs, 32 consec-
utive GPU threads are grouped into a warp, in which threads run the same sequence of instruc-
tions in lockstep. If the program executed by a warp includes branches taken by only some of the
threads, then the branches are serialized, decreasing performance. Another significant factor for
GPU performance is the memory access pattern in the GPU’s DRAM. If threads in a warp access 32
consecutive memory locations, then the accesses are served by a single memory transaction. Con-
versely, if the memory accesses by a warp do not follow this pattern, then multiple transactions
are issued, which can severely reduce the overall performance. GPU programs are commonly im-
plemented using frameworks such as CUDA or OpenCL. While the former only targets NVIDIA
GPUs, OpenCL supports cross-platform development and deployment on a variety of hardware
devices ranging from CPUs to accelerators such as GPUs, APUs, FPGAs, and Intel Xeon Phi. In
recent years, these accelerators have shown promising performance results for various simulation
problems [51]. To permit execution on a wide range of hardware platforms, the translation ap-
proach presented in our present article generates OpenCL code. In the remainder of the article,
we refer to the portion of the hardware controlled directly by the CPU as the host, and portion
executing OpenCL kernels as the device or accelerator. A CPU thread, also known as GPU stream,
is used to enqueue the kernels and sleeps while waiting for kernel execution to finish. To maximize
hardware utilization, the device can execute kernels from different streams, where each stream can
operate independently on separate data.

2https://www.top500.org.
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2.5 Code Transformation and Generation for Heterogeneous Computing

An automated transformation of a CPU program for efficient execution on heterogeneous
platforms often requires the parallelization of suitable program portions. When transforming
sequential into parallel code, loops are important sources of parallelism. In automated loop trans-
formations, data dependencies between loop iterations are analyzed. Subsequently, the computa-
tions are reordered to maximize the amount of parallelizable operations, while satisfying all data
dependencies. The code analysis frequently relies on knowledge of the problem class at hand. For
instance, existing works propose tiling approaches for the successive over-relaxation method in
linear algebra [13] and for stencil-based loop computations [8]. Da Li et al. [34] present a template-
based approach to the parallelization of irregular nested loops and recursive computations for
GPUs. Aside from maximizing the exploited parallelism, the second challenge in loop transforma-
tion targeting GPUs lies in achieving memory access locality [3]. Hou et al. [26] address the issue
of memory access locality by reordering computational operations in wavefront loops without af-
fecting the correctness of the results. Fully automated parallelization is possible for a certain class
of nested loops using the so-called polyhedral (or polytope) model [33], which permits a compile-
time analysis of data dependencies for affine programs. Several works propose approaches to trans-
form affine programs for parallelized execution on GPUs [4, 48]. While the above approaches can
be carried out without domain knowledge, their applicability is limited to programs of a certain
structure, e.g., nested loops with predictable control flow.

Another development approach for heterogeneous computing environments is to formulate
programs in a domain-specific language (DSL) and to generate code for the target platforms.
By providing abstractions tailored to the given problem domain, DSLs are often more concise than
general-purpose languages. Further, DSLs can be used to hide low-level or hardware-dependent
implementation details. Many DSLs have been proposed to solve computational tasks such as
graph problems [25], image processing [29, 39], and social network analysis [16]. A number
of DSLs have been proposed to achieve heterogeneous execution for simulations. The DSL by
Hawick et al. [20] permits the generation of simulation programs for many problems based on
partial differential equations. Similarly, Devito et al. [12] propose a language to build portable
mesh-based PDE solvers that can run on multiple platforms. In 2018, Cosenza et al. [11] presented
the OpenABL language, which allows users to formulate agent-based simulation models in a
hardware-independent manner. The generated code can be executed on CPUs or GPUs using a
number of existing frameworks.

Since our goal is to provide support for heterogeneous execution of existing simulators, we do
not define our own DSL. Instead, we rely on knowledge of the structure of SNN simulators to
enable source-to-source translation from C++ to OpenCL.

3 ANALYSIS OF SPIKING NEURAL NETWORK SIMULATORS

Conceptually, SNN simulations follow a common structure that is reflected in the software archi-
tecture of simulators and the computations involved in the process of an SNN simulation run. In
the following, we describe the general structure of SNN simulations as a basis for the transition
approach presented in Section 4.

3.1 Architecture

An SNN simulation can be seen as a collection of simulations for individual neurons that inter-
act with each other by the exchange of spikes. Often, each neuron is simulated in a time-stepped
fashion by updating the neuron’s internal state at each step. The changes in neuron state at a time
step may trigger zero or more spikes that are then sent to neighboring neurons. Since the spikes
must be considered in the target neurons’ future state updates, a neuron’s state can only be updated
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Fig. 1. A sequence of SNN simulation steps. The synaptic delay guarantees that neurons cannot interact

within a super step. Thus, inter-neuron synchronization is required only after a super step has been

processed.

once it has received all spikes with smaller timestamps. From this outline of an SNN simulation, we
can see that the two main operations are the neuron update and the spike delivery, the facilities
for which commonly form the main components of an SNN simulator: The neuron update com-
ponent receives the current states and incoming spikes as input and performs a simulation step for
each neuron. The output of this computation step is composed of the neuron’s new state and any
newly emitted spikes. The spikes delivery component is responsible for transferring the spikes
among neurons in the network. The delivery may either occur locally, if the connected neurons are
simulated in the same process, or remotely via inter-process communication or a physical network.

An important aspect of SNN simulations is the delay in spike transmission reflecting the synap-
tic delay, i.e., the number of time steps taken by the signal to arrive at and have an impact on
the target neuron. Simulators such as NEST [17] exploit this characteristic in a synchronization
scheme similar to the YAWNS algorithm [43] to avoid transferring all new spikes at every time
step. Instead, the simulation time is divided into super steps with the size of the minimal delay
in the neural network, with all spikes generated in a super step only being sent at the end of the
super step (cf. Figure 1). With this approach, it is guaranteed that all neurons receive the incom-
ing spikes in time, while the frequency of synchronization is reduced. The super steps also enable
larger amounts of computation between synchronization points, which is beneficial for parallel
computation on a GPU.

Since there are many different neuron and synapse models that can be used in SNN simulations,
simulators typically provide interfaces to allow other simulator components to interact with the
neuron update and spike delivery components regardless of the specifics of the underlying models.
Since neuron and synapse models may be added, extended, or modified frequently, we consider
the models the dynamic parts of a simulator.

The remaining simulator components are independent of the models and typically remain un-
changed during modeling and when executing simulations using different combinations of models
and parameters. We refer to these as static components. For instance, the static components in
NEST are the SimulationManager, which orchestrates the overall simulation (e.g., by advancing
time and triggering synchronization) and the ConnectionManager, which provides access to the
topology defined by the synapses.

3.2 Neuron and Synapse Models

Neuron models are differentiated by two aspects:

(1) Neuron state: Each type of neuron uses a set of variables (e.g., the current membrane
potentials) to represent the neuron’s state at a given time. Further, some configurable
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constants (e.g., the membrane capacitance and resting potential) may exist that affect the
neuron’s behavior.

(2) Update function: The update function defines how the state in the next time step is cal-
culated from the current state and the incoming spikes. If certain conditions are met, then
output spikes are generated to be transmitted to other neurons. Since neuron models are
often specified in terms of differential equations, the neuron update function frequently
involves performing one iteration of a numerical integration per super step.

As described in Section 2.1, synapse models can be either of STDP or static type. Similarly to
neuron models, they can be differentiated according to their state and their update functions:

(1) Synapse state: Each synapse in the network may have state variables and parameters. The
most important state variables are the weight, which affects a spike’s weight on arrival
at the target node, and the synaptic delay, which is the time required for a new spike
to be received by the target neuron. STDP models reflect a synapse’s plasticity, i.e., the
synapse state variables may be modified each time a spike is transmitted. In contrast,
static synapse models affect the spike weight in a fixed manner, independently of the state
variables. Since STDP models rely on the current value of the state variables to determine
each spike’s weight, STPD synapses may require substantially larger amounts of memory
for their internal data than static models.

(2) Synapse update function: In STDP models, each transmitted spike may modify the val-
ues of the synapse’s state variables. To achieve correct updates of the variables, spikes
must be processed according to timestamp order, which is an important constraint when
considering parallelized execution. Static synapse models do not require updates of the
state variables. Instead, a constant weight value is assigned to the spike before it is for-
warded to the target neuron. Thus, while the transmit function for STPD models may re-
quire significant amounts of computation, the execution of the transmit function of static
synapse models is reflected mainly by the memory accesses required to store new spikes
at the target neurons.

The above descriptions imply that while the neuron updates within each super step can be
trivially parallelized across neurons, it must be ensured that the spike transmission and update
steps at a STDP synapse follow the temporal order of the spikes.

4 PROPOSED TRANSITION APPROACH

In this section, we propose an approach to generate a GPU implementation from a CPU-based
SNN simulator in a semi-automated fashion. The approach follows the differentiation of static
and dynamic simulator components from Section 3.1, which makes it applicable to several CPU-
based SNN simulators: while some basic simulator functionalities are ported manually, neuron and
synapse models are analyzed and translated to code executable on heterogeneous hardware in an
automated fashion. In contrast, the computationally inexpensive portions of the simulator code
remain on the CPU.

4.1 Static and Dynamic Components

As discussed in the previous section, SNN simulators can be regarded as being comprised of static

and dynamic components. The static components constitute the simulator core of the simula-
tor, carrying out the basic operations in an SNN simulation such as the creation of neurons and
synapses, the triggering of neuron updates, and the exchange of spikes, synchronization among
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Fig. 2. Static and dynamic components in an

SNN simulator.

Fig. 3. Compilation workflow from C++ SNN

simulator code to OpenCL.

processes, and the time advancement. These essential procedures are carried out by every SNN
simulation, regardless of the neuron and synapse models used. Thus, the corresponding compo-
nents are rarely modified between simulation experiments or in the development cycle of the
simulator. The remaining part of an SNN simulator is comprised of the neuron and synapse mod-
els, which are used to construct networks. A simulation experiment may use any combination of
models from a model library. Further, experiments may require changes or extensions to the ex-
isting neuron or synapse models, or the development of new models. Thus, the models constitute
the dynamic part of the simulator codebase. A common interface for neuron and synapse models
is often provided so that the static components can communicate with the dynamic components
(cf. Figure 2). The resulting loose coupling among components simplifies the maintenance of the
simulator codebase, as static components are not affected by changes to the dynamic components
such as the addition, modification, or extension of models. The loose coupling also enables the
development of multiple implementations, i.e., targeting CPUs and GPUs, for the same neuron or
synapse model. The GPU-accelerated simulators NCS [24] and Nemo [15] as well as the purely
CPU-based NEST simulator rely on such an architecture. In contrast, CARLsim [10], which pro-
vides support for GPU execution, does not follow this structure. Instead, it defines separate inter-
faces for CPU and GPU implementation and the simulator explicitly selects an implementation at
runtime.

Since we assume that the static components of an SNN simulator are modified only rarely, the
effort of a manual translation of code for execution on heterogeneous hardware can be justified.
In addition, the static components are loosely coupled to the model implementations, allowing
for the required code changes to be reasonably small and self-contained. For example, in our im-
plementation described in Section 5, the key code modifications to add accelerator support were
limited to only a few source files.

The same strategy cannot be applied to the dynamic components: first, the variety of neu-
ron and synapse models makes a manual translation process cumbersome and error-prone. For
instance, version 2.14 of the NEST simulator distribution includes more than 50 neuron and 10
synapse models. Further, it may frequently be necessary to add, modify, or extend models to carry
out SNN studies. To handle the diverse and dynamic nature of the models, we propose a tool to
automate the transformation of neuron and synapse models for execution on heterogeneous hard-
ware. The transformation relies on the fact that most models share a similar basic structure, with
major differences only in the specific computations performed. The transformation tool exploits
the similarities among models by applying a template common to a class of models, which is then
populated with the model-specific computations.
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4.2 Transformation of Neuron Models

In this section, we present the steps required for porting neuron models to code executable on het-
erogeneous hardware. The overall workflow, which applies both to neuron and synapse models, is
illustrated in Figure 3. In the first step, we parse and analyze the model’s source code. We assume
that each neuron model is defined by a class with the neuron variables being class members. The
result of the code analysis is an abstract syntax tree (AST) describing the computations per-
formed in the neuron model code, as well as their order. Relying on the fact that the models follow
the same high-level structure, we can identify the code snippet carrying out the main computa-
tions that define the model behavior (ModelBehavior in Algorithm 1). The ModelBehavior routine
will be translated to OpenCL. To do so, the neuron state variables used in the ModelBehavior rou-
tine must be identified. The AST allows us to determine several properties of the variables used
in the routine: from the scope of a variable, we can determine whether it is local to the current
function local data or a member variable of the neuron. If a variable represents a state variable
of a neuron, then information on its type (e.g., integer or double-precision floating point) and di-
mensionality (scalar or array) allow us to allocate memory for the variable in the OpenCL code.
To conserve memory, state variables that are not used in the ModelBehavior routine are not allo-
cated in the OpenCL code. Finally, we identify function calls to later replace them with calls to
equivalent OpenCL functions (cf. Section 5.2).

After the analysis, OpenCL code is generated based on predefined code templates (cf. Figure 3)
for accelerator and host code. A critical part in the generation of the accelerator code is produc-
ing data access patterns suitable for the chosen hardware. Since our performance evaluations are
performed using GPUs, we automatically apply a common memory access optimization applica-
ble to all common GPU accelerators: due to the large number of neurons in a typical SNN, the
neuron state variables reside in the GPU’s high-capacity DRAM. Unfortunately, CPU code typi-
cally relies on an “array-of-struct” (AoS) representation, where neurons are stored as an array of
objects, with the state variables as object members. On a GPU, the AoS representation is known
to result in large numbers of memory transactions when operating on many array elements in a
data-parallel fashion. Thus, we convert the code to follow a “struct-of-array” (SoA) access pattern
by flattening out the neuron data into a one-dimensional array for each variable and accessing
the entries using each neuron’s numerical index. Since within a super step the state updates are
independent across neurons, we assign one GPU thread to each neuron. In contrast to the neuron
state variables, function-local variables rely on GPU registers by default and thus can be accessed
efficiently without further code transformations.

Depending on the data used by the model, host-side OpenCL API calls are generated for GPU
memory allocation and data transfer from and to the accelerator. Figure 4 provides pseudo-code
of the original and the transformed host code. The result of the code generation step is a set of
C++ files containing host and accelerator code. Further details on the transformation of the neuron
models as well as the example code are provided in Section 5.2.

4.3 Transformation of Synapse Models and Spike Delivery

Since there are two synapse model types (static and STDP) that differ in their characteristics, we
employ separate strategies for their transformation. One of the factors affecting this design deci-
sion is the high degree of nodes in neural networks. Motivated by the node degrees in mammals’
brains, a neuron is commonly connected to about 104 other neurons. When relying on STDP mod-
els, the resulting large numbers of synapses in the network incur substantial requirements both
in terms of memory capacity and in terms of computation to transfer spikes across the network.
As we will see in Section 5.3, the spike delivery constitutes the largest portion of the simulation
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Fig. 4. A super step in a CPU-based SNN simulator and in a simulator supporting heterogeneous hardware.

Fig. 5. Data transfer between host and device memory in the initialization step and during the simulation.

The shaded shapes illustrate memory allocated permanently on the device.

workload. Therefore, it is critical to achieving high performance and low memory usage for STDP
models.

In contrast, in the simple case of static synapse models, the computational and memory demands
are relatively low. Since the network topology is generated at the start of the simulation, the states
of all static synapses can be copied to device memory and remain there over the course of the
entire simulation, reducing the overall amount of data transfer between the host and the device.
Note that this also applies to the neuron data, as illustrated in Figure 5. The graph is stored in
the compressed sparse row (CSR) format, connections being grouped by their source node.
Each time we perform the spike delivery, the list of firing nodes is copied to the device. The CSR
format allows us to quickly determine the outgoing connections from the source node indexes and
perform the delivery. Because of the high degree of connectivity, on an NVIDIA GPU, we assign
one entire warp (32 threads) to process the outgoing connections of each source node. In static

synapse models, the order of transferred spikes can be ignored, since their weights are constant.
Therefore, we can deliver spikes with different timestamps in parallel. At the target node, atomic
operations are utilized to avoid race conditions with respect to multiple spikes received by a target
node at the same time.

Since STDP synapses consume significantly more memory than static models, storing all the
STDP synapses in device memory would severely limit the feasible network size. To achieve scal-
ability, we instead carry out the spike delivery through STDP synapses one batch of spikes at a
time. On a GPU, one thread is assigned to one spike. The spikes traveling through the same synapse
must be processed sequentially in timestamp order. To avoid additional processing, we group only
spikes with the same timestamp in each batch. When a batch of spikes is processed, the states
of STDP synapses transmitting these spikes are transferred to the device memory. After a batch
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has been processed, the memory allocated for the STDP synapse data is freed (cf. Figure 5). The
efficiency of this approach depends on the batch size, which is limited by the available graphics
memory. The corresponding device kernels are generated automatically according to the same
procedure as applied to the neuron models (cf. Figure 3).

5 HETEROGENEOUS NEST

We demonstrate our transition approach on the example of the well-known SNN simulator
NEST [17]. NEST is an SNN simulator supporting various neuron and synapse models. In the
following, we briefly sketch NEST’s architecture and describe our modifications as well as the
automatic transformation of neuron models.

The process to enable the automatic transformation of synapse models follows the same prin-
ciples as the transformation of neuron models. Thus, we leave the implementation of the auto-
matic transformation for synapses to future work. Our implementation currently includes manu-
ally ported versions of the synapse models required for the experiments.

5.1 NEST Overview

NEST is implemented using C++ and supports CPUs in shared and distributed-memory environ-
ments using OpenMP and MPI. The neural network is divided into a number of virtual processes

(VPs), where each VP runs as an OpenMP thread. Nodes are assigned to VPs in a round-robin
fashion. A synapse is stored in the same VP as the target neuron, which guarantees thread-safety
for the spike delivery, since only one thread can write data to a given neuron. The VPs can be
assigned to multiple processes communicating via MPI in a distributed-memory environment.

A super step in NEST involves the following operations:

(1) Each VP executes a super step on its assigned neurons, which involves executing the state
update function of each neuron according to the selected model. Since the super step is
divided into multiple time steps, the internal state of each neuron is updated multiple
times, potentially creating new spikes at each iteration. If an emitted spike has a target
node in a remote MPI process, then it is stored in a local buffer.

(2) The stored spikes are inserted into an MPI buffer and issued using an MPI_Allgather call
to provide all processes with the spike data.

(3) Each VP scans through its MPI receive buffer to obtain the list of source neurons of incom-
ing spikes. If the VP holds one or more target neurons, then it delivers the spikes through
the corresponding synapses according to the synapse model.

The division of work across VPs makes it convenient to extend NEST with support for hetero-
geneous hardware: Since each VP controls a device, multiple VPs can easily exploit the resources
of a multi-device system. Further, the support for MPI communication enables a multi-device ex-
ecution across multiple execution nodes without further development efforts.

The core component of NEST is the SimulationManager, which executes the operations of a
super step as described above. For spike delivery, the SimulationManager relies on the EventDe-

liveryManager, which delivers spikes within and across VPs. The ConnectionManager stores the
network topology of the current VP.

The above components constitute the core of the framework and do not require modification
when varying the neuron or synapse models across simulation runs. Thus, since the code changes
required to enable support for heterogeneous hardware are permanent and independent of the
chosen models being simulated, we carry out these changes manually.
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The main remaining components of the NEST framework are the neuron and synapse models.
NEST 2.14 provides more than 50 neuron models and 10 synapse models. To perform a simu-
lation run, the user prepares a script that describes the scenario, which is defined by the neu-
ron and synapse models with their parameters, the number of neurons and connections, the
simulated time, and so on. Based on the script, NEST constructs the network with the selected
models and executes the simulation. These models are defined as C++ classes and share a com-
mon interface so that the core components, particularly the SimulationManager, can invoke the
model behavior (e.g., as defined by the state update function) in a generic fashion. Using the
techniques described in Sections 4.2 and 4.3, we developed a tool that is supplied with a model
implementation in the form of C++ code as input and generates an OpenCL implementation exe-
cutable on OpenCL-supported accelerators. The compilation workflow follows the description in
Section 4.2.

5.2 Transformation of Neuron Models

Each neuron model defines the neuron’s behavior when interacting with other neurons through
incoming and outgoing spikes. In NEST, the behavior is implemented in the Update function
of the neuron class. The model further defines the internal state variables, which are modified
in the Update function. Algorithm 1 shows pseudo-code of the steps performed by the Update
function: using the current state of the neuron and the incoming spikes from other neurons as
input, the Update function executes state changes caused by the incoming spikes in a super step.
The computation is divided into multiple small time steps (lines 2 and 3). In the loop, the neuron
executes the procedure ModelBehavior , which is model-specific. At each time step, depending
on the current state, the neuron may emit spikes to be transmitted to neighboring neurons. The
SimulationManager invokes the SimulationUpdate function, which iterates through the neurons
of the local VP and invokes the Update function on each of them. The above procedure may be
executed by multiple VPs on disjunct sets of neurons concurrently.

To enable execution of the Update function on heterogeneous hardware, the computation
scheme is modified as shown in Algorithm 2. Now, the SimulationManager invokes MassUpdate,
which processes all neurons of the given type. In MassUpdate, if the neuron data has not been
initialized on the device, we copy the neuron data from the host to device memory (lines 2 and
3). Hence, the data is transferred to the device only once. Then, at each time step, all neurons are
updated in parallel on the device. During the update, neurons may emit spikes. Thus, we invoke
CopyDataDtoH (line 6), which copies spike counters from the device to the host that indicate to
the host the number of spikes generated by each neuron. The number of counters is equal to the
number of neurons. Currently, we represent the counters as 4-byte variables. However, since in
practice the values are small, depending on the scenario it may be sufficient to represent them using
even fewer bytes. In our experiments, this data did not incur substantial data transfers overhead.

An important step in the transformation is the generation of a device kernel for
ModelBehaviorGPU . To this end, we implemented a parsing tool based on LibTooling from
the CLang/LLVM toolkit3 that parses the C++ code of the ModelBehavior function of the
neuron model class. The parsing tool allows us to obtain the following required pieces of
information:

(1) The list of state variables used by the ModelBehavior function to identify the variables to
be transferred to the device.

3https://clang.llvm.org/docs/LibTooling.html.
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Fig. 6. Update function of the ia f _psc_alpha neuron model in the C++ and OpenCL implementation.

(2) The type and dimensionality of each variable. This information is used to allocate device
memory.

(3) Function calls performed during the update. The update function may invoke utility func-
tions to (i) retrieve incoming spikes from a neuron’s local storage and (ii) emit spikes.

Listing 1 of Figure 6 shows an example of the C++ code of the ModelBehavior routine for the
ia f _psc_alpha model. This code executes a number of instructions on the neuron’s state vari-
ables such as S_.r_, S_.y3_, S_.I_ex_. These variables are of primitive types (int or double), of-
ten as members of a C++ struct. The parsing tool gathers the type information from the class
header file. Further, the accesses to the ring buffer holding incoming spikes (lines 14, 19, and
33) and the transmission of spikes (lines 27–30) are detected as function calls to get_value and
event_delivery_manager.send.

Listing 2 of Figure 6 shows the generated OpenCL kernel code. All accesses to neuron state vari-
ables have been transformed from an array-of-struct (AoS) to a GPU-friendly struct-of-array (SoA)
pattern. For instance, the variable S_.r_ is of type int, where S_ is an instance of the State_ struc-
ture defined in the neuron class. In the OpenCL implementation, we define an int array S__r_
of size identical to the number of neurons. Now, the device thread with index tid accesses the
S__r_[tid] entry in the array. The utility function for accessing the ring buffer of incoming spikes
is replaced with a kernel call. For sending spikes, we maintain a counter spike_count of the number
of spikes sent by each neuron. The code portion for triggering spikes in the neuron tid is replaced
by an incrementation of spike_count[tid]. This counter is later copied back to the host (Algo-
rithm 2, line 6) so that the sending of spikes can rely on the existing facilities of NEST (Listing 1,
lines 27-30).
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Fig. 7. Spike output of CPU and GPU execution on the network size of 11,250 neurons.

Fig. 8. Speedup with one stream per GPU com-

pared to execution on a single CPU core.

Fig. 9. Speedup when executing multiple streams

on a single GPU over a single stream.

5.3 Evaluation

We executed the simulations on a system comprised of two nodes using Intel Xeon Gold 6148 2.4
G CPUs with 20 physical cores and 40 threads each, and four NVIDIA Tesla V100 SXM2 GPUs
with 16 GiB of RAM. The toolchain is comprised of GCC 7.2.0, CUDA toolkit 9.0, and OpenMPI
1.10.7. The GPU implementation is developed from version 2.14 of the NEST simulator. However,
the CPU results are obtained using the development branch of NEST 2.14, which in our experiment
provided better performance than NEST 2.14.

5.3.1 Verification. The correctness of our implementation is verified by comparing the total
number of spikes between CPU and GPU runs for a number of scenarios with different network
sizes and simulation times. Since a random number generator is associated with each VP, CPU and
GPU runs are compared using the same number of CPU threads and GPU streams, respectively.
In all tested cases, the results produced by the CPU and GPU variants are identical.

As the number of processed spikes has a strong impact on NEST performance, the comparison
of spike frequencies is also important [31]. Figure 7 shows the spikes generated by each neuron
for each time step for the CPU execution using 1 CPU thread and GPU execution using 1 GPU
stream. Identical spike patterns are generated during CPU and GPU execution, as illustrated in
Figures 7(a) and 7(b).

5.3.2 Performance. In the first experiment, we measure the speedup obtained by our GPU ver-
sion. Figure 8 shows the throughput improvement using single and multiple GPUs compared to
single-threaded CPU execution at different SNN scales. In the CPU version, we run the NEST 2.14
with only 1 VP, i.e., in a single thread. Our GPU program runs in a single process with one OpenMP
thread controlling each GPU. This setup does not involve MPI communication. We observe that
in most cases, the throughput scales almost linearly with the number of GPUs. For example, at a
network size of 56,250 neurons, the speedup of 2, 3, and 4 GPUs is 6.0, 9.6, and 12.6 over a single
CPU; or 1.7, 2.8, and 3.7 over a single GPU. The results also show that the GPU implementation
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Fig. 10. Performance comparison between a single multi-core CPU and a single GPU. The results are given

as speedup factors over one CPU core.

achieves better performance as the network size increases. At 22,500 neurons, the speedup factors
over a single CPU core using a single and 4 GPUs are 1.92 and 8.10. Meanwhile, at 56,250 neurons,
these ratios are 2.86 and 12.58. The reason for this result is the improved utilization of the GPU at
larger network sizes.

In the previous experiment, each GPU was controlled by a single thread. To better exploit the
GPU’s computing resources, we vary the number of CPU threads (or GPU streams) sharing a sin-
gle GPU. We compare the performance of multi-stream single-GPU runs with the performance
of a single-stream single-GPU execution. The results are shown in Figure 9. Note that, since the
remaining CPU portion of the simulator still performs minor amounts of work, e.g., for data seri-
alization, larger numbers of threads also reduce the time spent on the CPU portion. Further, the
performance is improved by overlapping CPU-GPU data transfers in one thread with kernel com-
putation in other threads. Generally, by increasing the number of threads (GPU streams) sharing
a single GPU, the performance improves. However, at 6 threads, the performance starts decreas-
ing slightly. A likely cause is the overhead of the additional kernel calls in relation to the smaller
amount of computation per call.

We also compare the performance between the multi-core CPU and GPU execution. Figure 10
shows the speedup over single-threaded CPU execution at different network sizes. Overall, the
performance gain yielded on the multi-core CPU is consistent across network sizes. For example,
a run using 4 threads is about 2.7 to 3.7 times faster than a single-threaded run. Meanwhile, as
mentioned above, the GPU performance increases with the network size. When using a single
stream to control the GPU, the GPU performance is comparable to 2 to 3 CPU cores. When relying
on 5 threads to control the GPU, substantially higher performance is achieved: even at 22,500, the
GPU outperforms 5 CPU cores. At 56,250 neurons, the speedup over a single CPU core is 9.4, or
2.4 times faster than a run using 5 CPU cores.

We also evaluate the effect of MPI communication on the performance of our NEST GPU imple-
mentation. Instead of executing multiple threads per process as in the previous experiments, we
execute multiple MPI processes, each of which is single-threaded and uses one GPU. To quantify
the proportion of runtime spent on different phases of the simulation, each process controls the
GPU using only one stream, although we have previously seen that employing multiple threads
per GPU increases the performance dramatically. Inter-node communication relies on the existing
MPI communicating scheme of NEST 2.14. We measure the running time of each of the following:
update, spike delivery, and MPI communication. The results are illustrated in Figure 11. It is evident
that the running time is dominated by the synapse update. In our experiments, the proportion of
time spent on spike delivery is about 81% to 87%. Compared with the original NEST implementa-
tion on a single CPU, our GPU method reduces the absolute running time of the spike delivery by
a factor of about 2 compared to the single-threaded run. The results show the importance of the
performance of the spike delivery for the overall running time. The update step accounts for about
10% of the running time, while MPI communication accounts for 2% to 8%. We conclude that in our
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Fig. 11. Breakdown of the running time with different numbers of MPI processes on a single execution node,

each using one GPU.

small-scale setup, MPI communication does not hinder performance increases through the use of
GPUs.

5.3.3 Memory Consumption. Since accelerators such as GPUs are typically equipped with lower
amounts of memory than host CPU memory, efficient use of the available memory is critical to be
able to process large segments of the network concurrently. Due to the large degree of connectivity
in SNNs, the synapse data typically constitutes the largest part of the memory consumption of an
SNN simulation. For example, in a network of 22,500 neurons, the synapse data accounts for 97%
of the total memory consumptions. In Section 4.3, we presented our strategy to efficiently repre-
sent the network in memory. The memory consumption of the benchmark from our performance
measurements is roughly proportional to the number of neurons in the network. A simulation of
a network of 11,250 neurons required 3.7 GiB of host memory and 0.8 GiB of graphics memory. At
56,250 neurons, about 18 GiB of host memory and 2.9 GiB of graphics memory are required. Our
experiments consumed about a factor of 4.6 to 6.2 more host memory than graphics memory.

The main factor limiting the maximum size of the simulated network is the available memory
on the accelerator. The applicability of existing work on GPU-accelerated SNN simulations to the
large-scale networks frequently encountered in practice is limited. Often, the considered networks
contained only 100 to 1,000 connections per neuron so that the entire network could be stored
in GPU memory. By batching the computational work (cf. Section 4.3), the accelerator memory
consumption in our implementation is largely decoupled from the network size. Hence, our GPU
implementation is still applicable to large-scale SNNs.

6 CPU-GPU CO-EXECUTION

Since recent supercomputers frequently rely on combinations of CPU and GPU devices, a CPU-
GPU co-execution enables the full use of such environments. For a CPU-GPU co-execution, the
workload consisting of neurons and synapses is divided based on the total number of VPs, each of
which is processed either by the original CPU-based NEST or the generated OpenCL implementa-
tion running on GPU. By balancing the workload between CPU and GPU, better performance can
be achieved compared to executing only on CPU or GPU. The main challenge lies in balancing the
workload between CPU and GPU, since typically, a GPU will process each time step substantially
faster than a CPU core.

6.1 Evaluation

We evaluated the simulations on a single compute node using two Intel Xeon E5-2670 2.6 GHz
CPUs with 8 physical cores and 16 threads each, and 4 NVIDIA Tesla K20 GPUs with 6 GiB of
RAM. NEST has been compiled with the same configurations described in the previous section.
This setup does not involve any MPI communication. The GPU streams are distributed among the
GPUs.
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Fig. 12. Strong scaling when simulating 56,250 neurons on a single compute node. Speedup of multiple CPU

threads and multiple GPU streams compared to a single CPU core.

Fig. 13. Overlapping communications and computations.

We conducted experiments to empirically determine the number of CPU threads and GPU
streams that achieve the best performance. First, a strong-scaling experiment is conducted for
CPU execution and GPU execution, where the total problem size is fixed at a scale of 56,250 neu-
rons while the number of threads (or streams, respectively) is varied. An even assignment is used to
divide the workload among the VPs, i.e., the same number of neurons and synapses are allocated
to each VP. Increasing the number of VPs will reduce the workload per thread. The speedups of
CPU threads or GPU streams are compared to a single CPU core, as shown in Figure 12. With the
CPU execution, the parallelization efficiency decreases only slightly as the number of CPU threads
increases. GPU execution shows a strong scaling up to 6 GPU streams, where it exhibits higher
speedup (7.59) compared to 6 CPU threads (6.04). However, GPU execution shows a slowdown
when more than 6 streams are used. As GPU-only execution is faster than CPU-only execution in
some cases, our implementation can gain performance benefits from a CPU-GPU co-execution.

When the number of GPU streams is low, the computation workload per GPU stream is higher
than the communication workload. Hence, it is possible to overlap the communication time with
the computation time, as shown in Figure 13(a). As the number of GPU streams increases, the com-
putation workload per GPU stream becomes lower, because the workload processed by each GPU
becomes smaller. The computation time is too short to hide the communication time. For example
in Figure 13(b), the communication in stream 2 cannot start even if the computation in stream 1 is
completed earlier. This is because the bandwidth for communication is fully utilized by stream 1,
blocking the communication in stream 2. Therefore, when the number of GPU streams increases,
the overall running time increases due to the serialization of communication time. If a faster in-
terconnect between the host CPU and GPU is used, e.g., NVSwitch, then the communication time
can be reduced. CPU-only execution does not have this additional overhead, hence increasing the
number of CPU cores will give better speedup.

For a system with low numbers of CPU cores and GPUs, it is possible to achieve a performance
benefit with CPU-GPU co-execution. For example, executing up to 6 GPU streams can achieve
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Fig. 14. CPU-GPU co-execution using a different number of CPU threads and workload assignments on a

network size of 56,250 neurons. Number of GPU streams is fixed at 4.

a better speedup compared to 6 CPU threads (as shown in Figure 12). Since the GPU execution
does not scale efficiently beyond 6 streams, the remaining workload can be processed by the CPU
threads to improve overall performance over executing only using CPUs or GPUs. Due to the
differences in processing speed, the amount of workload assigned to a CPU core or GPU stream
should be chosen separately.

In Figure 14, we simulate a network size of 56,250 neurons and measure the speedup compared
to a single CPU core execution. By selecting the number of streams where GPU-only execution is
faster than CPU-only execution, we can determine the trade-off between the number of streams
and the number of threads. We used a fixed number of 4 GPU streams and vary the number of
additional CPU threads up to four threads. Figure 14(a) compares the speedup across a different
number of CPU threads and workload assignments. For even assignment, when 4 GPU streams
and 4 CPU threads are used, there is a speedup of 7.57× compared to a single-threaded run. This is
comparable to just running 6 GPU streams (7.59×), but slower compared to 8 CPU threads (8.07×).

Figure 14(b) shows the average running times of the CPU threads and GPU streams for the
whole simulation when using different numbers of CPU threads and workload assignments. The
synchronization time between the threads/streams are not included. Comparing with Figure 14(a),
we can see that the best performance is achieved when the difference between the average running
times for CPU threads and GPU streams is small. The reason is that these threads/streams are fully
utilized and not idle-waiting for other threads/streams to complete. For example, when using only
one CPU thread, the best configuration is an assignment of 10% of the workload to the CPU, and
it can be seen in Figure 14(b) that the CPU and GPU running time is almost equal. Similarly, by
distributing 25% of the workload among these 3 CPU threads, well-balanced running time can be
achieved. This configuration yields the best speedup by CPU-GPU co-execution at 8.99×.

From this experiment, we conclude that for a compute node with a small number of cores and
GPUs, it is possible to achieve better performance using CPU-GPU co-execution by balancing the
workload between CPU and GPU through the assignment of a different number of neurons to a
CPU core or GPU stream separately. However, benchmarking is required to determine the optimal
number of CPU threads and GPU streams for co-execution, and the number of neurons allocated
to each CPU and GPU.

6.2 Simulation Performance Model

6.2.1 CPU and GPU Performance Model. In this subsection, we propose to use an analytical
model of the simulation performance to determine suitable co-execution parameters to achieve the
best possible performance given an SNN model to be simulated. An existing performance model for
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CPU-based NEST simulations has been developed based on a semi-empirical approach [45]. The
authors collected measurements of the runtime performance of NEST under various parameter
settings and subsequently fitted the analytical model to the empirical data. The performance model
is specific to an SNN model, as the SNN model determines the connectivity between the neurons
and the spiking behaviors, which strongly influences the spike delivery time. It allows predictions
regarding the SNN model for any simulation size without the need for new profiling runs. We
extend the original CPU performance model for GPU and then combine them to form a CPU-GPU
co-execution performance model.

First, we present the original CPU performance model in Reference [45]. The simulation is exe-
cuted on the benchmark model described in Section 2.3. The original CPU-based NEST simulator
is executed in a distributed manner overM MPI processes and within each process overT OpenMP
threads. The network model contains N neurons, which is scaled by the scale factor S such that
N = S × 11,250. It also has a constant fan-in of K = 11,250 synapse per neuron. The random exter-
nal input is provided by Poisson generators with a total firing rate of F = Kx ×Vx , with Kx being
the number of external inputs and set to 9,000, and Vx being the rate of single external input and
set to 2.3 spikes per second [28]. The total firing rate is also scaled by S . Due to the homogeneous
neurons and synapses as well as even distribution of spikes among all synapses, each VP (i.e.,
thread) has to deal with about the same amount of workload.

The NEST simulation has been broken down into the following components, showing the time
complexity of each component:

(1) Update of neuron and synapse states:
tupdate ∈ O ( N

MT
).

(2) Main loop of spike delivery within each virtual process:
tdeliver _main ∈ O (MT ).

(3) Checking every spike event for its relevance to the virtual process (part of spike delivery):
tall_spikes ∈ O (FS ).

(4) Processing relevant spikes within each virtual process (part of spike delivery):

tr elevant_spikes ∈ O ((1 − e− K

MT )FS ).
(5) Generating random external input (spikes) to the neural network:

tpoisson ∈ O ( N
M

).
(6) MPI communication (Bsize is the size of the per-process send buffer):

tCOM ∈ O (BsizeM ).

The estimated overall running timêtCPU using CPU cores only is

̂tCPU =̂t
C
update +̂tdeliver _main +̂tall_spikes +̂t

C
r elevant_spikes +̂tpoisson + tCOM (1)

= p0
N

MT
+ p1MT + p2FS + p3

(
1 − e−

K

MT

)
FS + p4

N

M
+ p5BsizeM, (2)

with (p0, . . . ,p4) being the vector of free parameters for model fitting. p5 can be set to a fixed
value based on NEST MPI communication benchmarks to limit the number of free parameters. If
executed on a single compute node only, then the component tCOM can be ignored.

Our GPU version executes the neuron update (1) and spike processing (4) on GPU, while the
rest of the components are executed in the same way as the CPU execution. Hence, parameters
(p1,p2,p4,p5) are the same for GPU execution. There are three additional parameters for the GPU
performance model (p6,p7,p8). For the spike processing, ̂tG

r elevant_spikes
is scaled by p7T + p8 to
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Fig. 15. Results of performance model fitting on CPU and GPU execution, comparing between estimated

and measured running times.

consider the serialization of the GPU communication:

̂tG
update = p6

N

MT
, (3)

̂tG
r elevant_spikes = (p7T + p8) ×

(
1 − e−

K

MT

)
FS . (4)

Hence, the overall analytical model for modeling the GPU performance is as follows:

̂tGPU =̂t
G
update +̂tdeliver _main +̂tall_spikes +̂t

G
r elevant_spikes +̂tpoisson + tCOM (5)

= p6
N

MT
+ p1MT + p2FS + (p7T + p8) ×

(
1 − e−

K

MT

)
FS + p4

N

M
+ p5BsizeM . (6)

First, the analytical model for̂tCPU (M,T , S ) was fitted to the empirical data of CPU execution
by non-linear least-squares optimization. After the model fitting, parameters (p0,p1,p2,p3,p4,p5)
are determined. Parameters (p1,p2,p4,p5) are reused in̂tGPU (M,T , S ). Next, the analytical model
for ̂tGPU (M,T , S ) was fitted to the empirical data of GPU execution to determine the remaining
parameters (p6,p7,p8).

After fitting the analytical performance models to the empirical data, the coefficient of deter-
mination for CPU execution and GPU execution amount to R2

CPU = 0.991 and R2
GPU = 0.846, re-

spectively. A detailed comparison is shown in Figure 15, where it compares between estimated and
measured running times. The measured running times are plotted as dots, and fitted models are
drawn as lines. Each sub-figure compares the estimated and measured running times for different
network sizes with CPU and GPU execution. We can observe that̂tCPU (M,T , S ) is fitted with high
accuracy across different network sizes. While higher deviations are observed for ̂tGPU (M,T , S )
for some network sizes, a good fit is achieved in most cases. Hence, the fitted analytical models
can be used to predict the execution time for any simulation size and determine the performance
benefits of executing the simulation on CPU or GPU.

6.2.2 CPU-GPU Co-execution Performance Model. Based on the CPU and GPU performance
model, we propose a CPU-GPU co-execution performance model. The parameters from the CPU
and GPU performance models are used to construct the performance model for CPU-GPU co-
execution. Since the components (2, 3, 5, 6) are the same in the CPU and GPU models, we can split
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Fig. 16. Comparison between estimated and measured running times for CPU-GPU co-execution on a net-

work size of 56,250 neurons, using 4 GPU streams.

the performance models into:

̂tbase =̂tdeliver _main +̂tall_spikes +̂tpoisson + tCOM , (7)

̂t ′CPU =̂t
C
update +̂t

C
r elevant_spikes , (8)

̂t ′GPU =̂t
G
update +̂t

G
r elevant_spikes . (9)

̂tbase is the common components that are executed for both CPU and GPU execution, while the
remaining workload depends on either the CPU or GPU execution. For a CPU-GPU co-execution,
TC CPU threads and TG GPU streams will be used, which are determined through experimental
runs of CPU-only and GPU-only executions. TG GPU streams are selected such that the GPU-
only execution is faster than CPU-only execution. This means that it is more efficient to execute
using GPU streams compared to the same number of CPU threads. Given the ratio α of workload
assigned to GPU, the overall analytical model for co-execution is as follows:

̂tC
co =̂tbase (M,TC +TG , S ) +̂t ′CPU (M,TC , S ) × (1 − α ), (10)

̂tG
co =̂tbase (M,TC +TG , S ) +̂t ′GPU (M,TG , S ) × α , (11)

̂tco = max(̂tC
co ,̂t

G
co ). (12)

The optimal α can be determined empirically based on fixedTC andTG .̂tC
co is the estimated running

time for the CPU threads and̂tG
co is the estimated running time for the GPU streams. The overall

estimated running time is the slower time between̂tC
co and̂tG

co .
The results of the co-execution analytical model are validated against empirical data of CPU-

GPU co-execution from the previous subsection. The detailed comparison between estimated and
measured running times for CPU-GPU co-execution on a network size of 56,250 neurons is shown
in Figure 16. Each sub-figure compares different workload assigned to GPU. The coefficient of
determination based on the validation is R2

co = 0.919. When 90% of the workload is assigned to
the GPU in Figure 16(a), the running time is dominated by the GPU execution time. When the
workload assigned to GPU decreases, if a small number of CPU threads are used, the running
time is dominated by the CPU execution time. When more CPU threads are used, the overall
running time decreases as the remaining workload is divided among the additional CPU threads.
The running time is minimal when the workload is well-balanced between the CPU and GPU.
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Fig. 17. Estimated speedup for 8 CPU threads, 4 GPU streams, and CPU-GPU co-execution compared to a

single CPU core.

These performance patterns are modeling with high accuracy by our co-execution performance
model.

To showcase the benefits of the analytical model for co-execution, Figure 17 shows the speedup
for 8 CPU threads, 4 GPU streams, and CPU-GPU co-execution compared to a single CPU core
across different network size. The optimal parameters for̂tco are determined through an exhaus-
tive parameter exploration to find the minimal estimated running time. CPU-GPU co-execution
has an average speedup of 1.33× and 1.36× over CPU or GPU execution, respectively. In conclu-
sion, by fitting the analytical model of CPU and GPU execution, we can estimate the co-execution
performance and determine the suitable parameters to achieve better performance.

7 DISCUSSION AND CONCLUSIONS

We presented an approach to transform CPU-based spiking neural network simulators to en-
able their execution on heterogeneous hardware. Our approach relies on manual porting of static
core simulator functionalities, whereas neuron model code is analyzed and transformed automat-
ically. We demonstrated our approach by transforming the well-known NEST simulator to sup-
port OpenCL, enabling its acceleration using heterogeneous hardware platforms such as GPUs,
FPGAs, and DSPs. Since the transformed code supports co-execution on multiple device types,
better hardware utilization and lower runtimes can be achieved on modern supercomputers with
GPUs. Our performance measurements show that at sufficient utilization, a single GPU achieves
the performance of about nine CPU cores. A CPU-GPU co-execution with load balancing is also
demonstrated, which shows better performance compared to purely CPU-only or GPU-only exe-
cution. Based on an existing CPU performance model, the corresponding analytical performance
models for GPU execution and CPU-GPU co-execution are also proposed and validated against
the empirical data.

Compared to other GPU-accelerated simulators that use NVIDIA’s CUDA platform [10, 15, 24,
40, 52], the OpenCL code generated by our code transformation can also exploit other types of
accelerators (e.g., FPGAs and DSPs) in addition to GPU, which may further accelerate certain ex-
periments. Future research in hardware-specific optimizations is required to achieve good per-
formance. In addition, investigating the energy cost of execution on accelerators is important to
justify the transition to a different architecture where energy utilization is one of their key design
considerations.

Our implementation targets NEST version 2.14. NEST 2.16 [36] has been released with improve-
ments in network build time and scalability over the NEST 2.14 [28] and comparable performance
in small-scale and medium-scale systems. Extending our work to NEST 2.16 could allow us to sup-
port large networks at an even higher performance. Further, our transformation approach could
be applied to other established CPU-based simulators such as NEURON [23] and PCSIM [44].
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Finally, the OpenCL-accelerated NEST stores neuron state data permanently in accelerator
memory. To support the data collection requirements of real-world studies, it may be necessary to
periodically transfer parts of this data to host memory. In future work, it would be also interesting
to explore methods for in situ data analysis in accelerator memory, transferring only the analysis
results to the host.
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