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Abstract—Microscopic traffic simulation is associated with sub-
stantial runtimes, limiting the feasibility of large-scale evaluation
of traffic scenarios. Even though today heterogeneous hardware
comprised of CPUs, graphics processing units (GPUs) and fused
CPU-GPU devices is inexpensive and widely available, common
traffic simulators still rely purely on CPU-based execution,
leaving substantial acceleration potentials untapped. A number of
existing works have considered the execution of traffic simulations
on accelerators, but have relied on simplified models of road
networks and driver behaviour tailored to the given hardware
platform. Thus, the existing approaches cannot directly benefit
from the vast body of research on the validity of common traffic
simulation models. In this paper, we explore the performance
gains achievable through the use of heterogeneous hardware
when relying on typical traffic simulation models used in CPU-
based simulators. We propose a partial offloading approach that
relies either on a dedicated GPU or a fused CPU-GPU device.
Further, we present a traffic simulation running fully on a many-
core GPU and discuss the challenges of this approach. Our results
show that a CPU-based parallelisation closely approaches the
results of partial offloading, while full offloading substantially
outperforms the other approaches. We achieve a speedup of up
to 28.7x over the sequential execution on a CPU.

I. INTRODUCTION

Agent-based microscopic traffic simulation has become an
important tool for researchers and decision makers to in-
vestigate traffic-related phenomena and adjust traffic-control
strategies [1]. In microscopic traffic simulation, each vehicle
is an agent that determines its movement autonomously based
on its surroundings. This level of detail is often needed to
better understand traffic situations and to observe specific
effects on the overall traffic system [2]. However, due to
the increasing complexity of microscopic traffic simulation
models, the microscopic approach can be associated with
enormous computational costs, limiting its scalability.

Existing efforts to speed up agent-based traffic simula-
tions can be categorised by the considered hardware plat-
forms. Firstly, high-performance computing environments can

be employed to distribute the workload to a large number
of CPU-based compute nodes interconnected using a low-
latency and high-throughput interconnect such as InfiniBand.
Commonly, libraries such as OpenMP and MPI are used to
parallelise across CPU cores and compute nodes.

The second class of approaches targets compute nodes
equipped with accelerators such as GPUs, many-core CPUs,
or Field-Programmable Gate Arrays (FPGAs). Increasingly,
these types of accelerators are available even in commodity
workstations. Segments of the simulation model code that are
suitable to be offloaded to an accelerator, e.g., numerically
intensive computations, are identified and ported to the target
platform [3], [4]. By applying this approach, performance
gains can be achieved while still allowing modellers to easily
adapt the representation of the road network, statistics collec-
tion, input/output, and so forth. The frequent data transfers
required by partial offloading approaches can be avoided by
offloading the entire simulation to the accelerator [5], [6].
However, since code running on current accelerators must
still be optimised for the given hardware to achieve highest
performance, porting large segments of an existing simulator
to an accelerator requires substantial development efforts and
decreases the maintainability of the model code. Thus, there
is a tradeoff between the performance gains on one hand, and
the development efforts and maintainability on the other hand.

In this paper, we explore the performance benefits of
execution schemes to exploit the computational capacities of
dedicated CPUs, GPUs and fused CPU-GPU devices (Acceler-
ated Processing Units, APUs). We consider a traffic simulation
with a graph-based representation of the road network, and
well-established models for car-following and lane-changing
behaviour used in common CPU-based traffic simulators. The
same graph-based road network representation and models are
considered by all execution schemes to support simulation-
ists in parallelisation decisions without the need to rely on
hardware-specific models.

We first systematise the options for parallelisation based
on the data dependencies defined by the Sense-Think-Act978-1-5386-5048-6/18/$31.00 ©2018 IEEE



cycle of underlying agent-based models. For a resulting set of
execution schemes employing many-core hardware, we discuss
the required changes to an existing simulator architecture
and assess the performance gains compared to an optimised
CPU-based execution. We propose a simple partial offloading
scheme relying either on a dedicated GPU or on an APU,
achieving a speedup of up to 1.7x. A fully GPU-based execu-
tion scheme is shown to achieve a speedup of up to 28.7x at
the cost of introducing complexity in the model development.
Our implementations are made available to the community1.

Our main contributions are as follows:
• We present the first comprehensive study on execution

schemes for road traffic simulation on a heterogeneous
CPU/GPU platform based on common road network and
driver behaviour models.

• We propose partial and fully GPU-based execution
schemes and describe the required modifications to the
base case of a CPU-based traffic simulator.

• We present performance measurements comparing the
execution schemes to the purely CPU-based execution.

The reminder of this paper is organised as follows: In
Section II, we give an overview of related work. In Section III,
we describe the set of models that constitute the considered
agent-based traffic simulation. In Section IV, we explore dif-
ferent execution schemes for agent-based traffic simulation on
heterogeneous hardware. In Section V, we discuss challenges
and future work. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In the following, we first outline the current hardware and
software support for general-purpose computations on GPUs.
Subsequently, we sketch basic concepts of agent-based simula-
tion, which forms the basis for microscopic traffic simulation.
Finally, we give an overview of existing work on executing
agent-based traffic simulation using heterogeneous hardware.

A. General-Purpose Computing on GPUs

Due to the massively parallel architecture of Graphics
Processing Units (GPUs), highly data-parallel tasks can be
executed at high performance. However, most GPUs connect
to the host CPU through a PCI-E bus. Thus, interactions
between the host CPU and the GPU require data transfers
between the CPU and GPU memory, the cost of which
may reduce the benefits of GPU-based parallel processing.
In recent years, architectures that fuse a CPU and a GPU
on a single die have been introduced (cf. Figure 1). Since
in these architectures, the CPU and GPU components are
able to access the same memory, explicit data transfers can
be avoided entirely. However, existing Accelerated Processing
Unit (APU) products such as recent Intel and AMD processors
have focused more on energy efficiency than performance.
Thus, the computational power of the GPU portion compared
to dedicated graphics cards is relatively low.

1https://github.com/xjjex1990/oclTrafficSimulator
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Fig. 1: The high-level architecture of an Accelerated Process-
ing Unit. The CPU and the GPU both have direct access to
main memory.

When accessing the memory of a dedicated GPU, the ar-
chitecture prescribes a preference for memory access patterns
where neighbouring threads access neighbouring memory lo-
cations. Such accesses can be coalesced, i.e., merged to reduce
the number of memory transactions, increasing the effective
memory throughput compared to scattered accesses.

Frameworks such as CUDA [7] and OpenCL [8] simplify
the development of GPGPU code by enabling developers to
program in C-like languages without considering low-level
details of the hardware. CUDA is a proprietary development
platform targeting NVIDIA graphics cards. OpenCL is an
open standard for a programming framework targeting various
computing devices such as CPUs, GPUs, and FPGAs, with
implementations from a wide range of vendors.

In this paper, we will focus on OpenCL to run simulation
code on heterogeneous hardware. Development of an OpenCL
program involves API calls to allocate memory, to perform
data transfer between the host and other devices, and calls to
execute device code formulated in so-called kernels, which are
executed in parallel by a configurable number of threads.

In OpenCL, threads are called workitems. A configurable
number of workitems form a workgroup. Workitems in one
workgroup have access to a certain amount of shared memory
and can be synchronised efficiently.

B. Agent-Based Traffic Simulation

In agent-based simulations (ABS), the simulated entities
perform actions based on the state of other entities and
the simulated environment. Conceptually, an ABS typically
follows a Sense-Think-Act cycle [9]: In the Sense stage, each
agent detects its neighbours and gathers information from its
environment. In the Think Stage, each agent makes decisions
based on the information collected in the Sense stage. In the
Act stage, each agent updates its state based on the decisions
made in the Think stage. After a Sense-Think-Act cycle is
completed, simulation time advances, and a new cycle starts.

In most existing agent-based traffic simulators such as
SUMO [10], VISSIM [11] or CityMoS [12], vehicles are
so-called Driver-Vehicle-Units (DVUs), composed of driver
models and vehicle models. Driver models include models to
describe car-following and lane-changing behaviour. Vehicle
models represent the physical characteristics of individual
vehicles as well as simulating components such as engines
and auxiliary power consumers.



C. Traffic Simulation using Heterogeneous Hardware

Due to the opportunity to separate the computations accord-
ing to the Sense-Think-Act cycle and the independent com-
putations within each stage of the cycle, conceptually, agent-
based traffic simulation (ABTS) lends itself to acceleration
on many-core hardware. A survey of techniques for general
agent-based simulation on heterogeneous hardware is given
in [13]. Considering the existing works on ABTS using many-
core devices, two general approaches can be differentiated:
offloading approaches using a host CPU and a many-core
device, and purely GPU-based approaches.

While offloading approaches have been widely explored
in the context of discrete-event simulation [14], [15], most
existing works on traffic simulation using many-core devices
have focused on purely GPU-based execution. In purely GPU-
based approaches, the entire simulation is executed on the
GPU so that significant communication with the host CPU is
only required at the start and end of the simulation. However,
this approach makes it necessary to adapt the data structures
and the control flow to the hardware properties of the GPU.
Further, debugging and extending the simulator may require
expert knowledge in parallel computing and the consideration
of hardware-specific details.

Perumalla [5] proposes to map a graph-based network
onto a grid in a GPU-based traffic simulation. Since this
representation is highly suited to the GPUs architecture, the
approach enables simulations at the scale of road networks
covering entire states of the USA. The considered model is
field-based, i.e., vehicles probabilistically move in a certain
direction at each cell in the grid, each cell storing the number
of agents currently residing at the cell.

In the approach proposed by Strippgen and Nagel [16], each
road is represented by a first-in, first-out queue stored as a ring
buffer, one GPU thread processing one road. Since a vehicle’s
mobility to the end of each road is determined directly from the
speed limit and road length, their simulation can be considered
mesoscopic instead of microscopic.

Hirabayashi et al. [3] compare two approaches to purely
GPU-based ABTS on a single-lane road based on the Optimal
Velocity model [17]: as in most other works, in the first
approach, the CPU calls GPU kernels to execute the agent
updates at each step in model time. In the second approach,
the entire simulation is performed within a single kernel call.
Since synchronisation across thread blocks is not supported
within a kernel, the authors quantify the error incurred by the
lack of synchronisation.

Wang et al. [18] execute road traffic simulations of an
infinite-length two-lane road on a dedicated GPU or the GPU
portion of an APU. The main focus of their work is an
efficient neighbour discovery algorithm on an APU. While
all main parts of the simulation run on the GPU, a merging
step required when agents enter a lane can be performed on
the CPU. As in our work, the Intelligent Driver Model [19]
is employed to simulate car-following. For lane-changing,
authors rely on the MOBIL model [20]. Of the existing works,

this is the closest to our present paper, since it shares our
intention to compare execution approaches on heterogeneous
hardware and employs common driver behaviour models. The
main difference to our work is the reliance on a single road
instead of a road network. Thus, Wang et al. rely on bulk GPU
operations on two large arrays holding all vehicles, whereas
our simulation using a graph-based road network requires fine-
grained operations on hundreds of thousands of small arrays
representing one lane each.

Heywood et al. [6] use their FLAME GPU framework to
execute a traffic simulation running entirely on a GPU. Vehi-
cles accelerate according to Gipps’ car-following model [21]
on grid road networks. Neighbouring agents are not stored in a
joint data structure associated with each lane but communicate
each update in position and velocity using a messaging system.
In contrast to our work, their focus lies more on different
messaging systems than on exploring the possibilities for
offloading to many-core devices.

Finally, an approach to accelerate parameter studies is
proposed by Shen et al. [22]. They consider simulations of
a small road network of six intersections, executing multiple
replications of the traffic simulation in parallel on a GPU.
Their work relies on the GM car-following model [23], but
disregards lane-changing. The focus is on exploring the pos-
sibility to execute large numbers of simulations in parallel.

While many options for GPU-based simulations have been
investigated by the existing works, we are not aware of
any previous work evaluating offloading opportunities under
the constraint of maintaining a graph-based road network
representation and well-known models for car-following and
lane-changing as in common CPU-based simulators. Thus, our
results can support simulationists in the parallelisation of their
simulation systems without the need to rely on models tailored
to the GPU platform.

III. SIMULATION MODELS AND SYSTEM

We consider a traffic simulation running on an arbitrary
road network represented as a graph. Edges represent road
segments, nodes represent intersections. Each road segment
may have multiple lanes.

The driver behaviour is governed by two essential models:
a car-following model and a lane-changing model.

Each car follows the vehicle ahead and avoids collisions by
adjusting its acceleration and deceleration at every time step.
For car-following behaviour, we employ the Intelligent Driver
Model (IDM) [19]. The input parameters of IDM include the
current velocity, a desired velocity, and the distance and speed
of the vehicle in front. IDM returns the acceleration for the
next time step limited by a maximum possible acceleration.

While the car-following model controls the longitudinal
movement of the vehicle, lateral movement is handled by the
lane-changing model. Typically, the simulated vehicle evalu-
ates whether changing the lane could allow it to accelerate
(Discretionary Lane Change, DLC) or whether a lane change
is necessary to continue its route (Mandatory Lane Change,
MLC). In this paper, we use Ahmed’s lane-changing model



TABLE I: Average and peak number of agents on the road
depending on the agent generation rate.

Generation Rate Average Peak
2 4 557 6 257
5 7 257 20 745

10 9 788 35 423
20 11 291 44 922
50 12 218 48 964
100 12 717 49 652

[24], [25]. In Ahmed’s model, the DLC decision is made based
on evaluating whether turning into the gap bounded by the
preceding and succeeding vehicles in the neighbouring lane
improves a utility function affected by the difference to the
desired velocity and the gaps on the current and neighbouring
lanes. A decision is made based on two random numbers
to determine probabilistically whether the lane-changing ma-
noeuvre is actually performed.

The traffic intensity is varied by configuring the generation
rate, which is the number of agents generated at each time step
of 250ms, creating different levels of congestion (cf. Table I).
In total, 50 000 agents are generated.

The considered traffic simulation is executed on a model
of the road network of the city-state of Singapore. The
agents’ routes are pre-calculated based on the shortest path
given a origin-destination pair drawn uniformly at random.
The performance measurements are performed on a system
equipped with an Intel Core i7-4770, 16 GB of RAM and a
dedicated NVIDIA GTX 1060 graphics card with 6 GB of
RAM. An execution scheme for partial offloading is evaluated
on an APU platform with a dual-core Intel Core i5-4278U, an
integrated Intel Iris Graphics 5100 GPU and 16 GB of RAM.

IV. EXECUTION SCHEMES

A. Overview

As a starting point, we consider a CPU-based sequential
microscopic traffic simulation as implemented in common
simulation frameworks such as Repast [26] and Mason [27]

Each vehicle is represented by an agent, whose behaviour
is determined by several models, each following the Sense-
Think-Act cycle. Pseudo code of the core simulation loop is
given in Algorithm 1.

To identify potentials for parallelisation, we consider the
dependencies among the stages and within each stage (cf. top
of Figure 2). We can observe that the Sense and Think stages
are independent across agents and are thus candidates for
parallelisation. During the Act stage, agents may affect their
neighbours, e.g., by attempting to enter the same position on
a lane as another agent. Since these interactions are difficult
to predict, parallelisation of the Act stage is non-trivial. Thus,
in our CPU-based execution scheme (OMP-SENSE-THINK-
CPU), used as a baseline in our experiments, we parallelise
only the Sense and Think stages.

Considering opportunities for offloading the stages to a
GPU, we note that for each agent, the Sense stage requires
access to a portion of the road network and agent states to

while termination criterion not satisfied do
foreach agent do

agent.model1.sense()
agent.model1.think()
agent.model1.act()

agent.model2.sense()
agent.model2.think()
agent.model2.act()

...
end
advance simulation time

end
Algorithm 1: Pseudo code of the core execution loop of an
agent-based simulation. The agent interactions during the Act
stage prohibit trivial parallelisation of the loop iterations.

gather the relevant neighbour states. In effect, the Sense stage
requires access to most or all of the simulation state and is thus
not well-suited for offloading. Similarly, updating the agent
states in the Act stage requires access to most or all of the
agent states. Thus, we propose two variants of an offloading
scheme that executes the Think stage on a GPU: in OCL-
THINK-GPU, we execute the Think stage on a dedicated GPU,
which requires data transfers over the PCI-E bus before and
after the computations. In OCL-THINK-AGPU, we offload to
the GPU portion of an APU. Although the limited compute
resources of the integrated GPU constrain the performance
benefits in terms of pure computation, the shared access to
main memory by the CPU and the GPU portion allows us to
eliminate data transfer delays.

Finally, we explore a fully GPU-based execution scheme
(OCL-ALL-GPU) in which all stages are executed on a
dedicated GPU. This scheme eliminates all major data trans-
fers during the main simulation loop but requires porting the
entire simulator engine to the GPU. Since properties of a
graph-based road network representation are exploited, OCL-
ALL-GPU is specific to the considered models, whereas the
other execution schemes are applicable to other agent-based
models that follow a Sense-Think-Act cycle.

Since our OpenCL implementation also allows for execution
on a CPU, we compare the execution schemes with the same
implementations running in parallel on a CPU (OCL-THINK-
CPU), the CPU portion of an APU (OCL-THINK-ACPU), and
a fully parallelised CPU-based execution (OCL-ALL-CPU).

The bottom of Figure 2 lists the execution schemes together
with the means to carry out the required data transfers. In
the remainder of this section, we describe each execution
scheme in detail. For each scheme, we discuss the overall
design, implementation concerns as well as the results of our
performance measurements.

B. CPU-Based Execution

The starting point for our work is a sequential CPU-
based traffic simulator as represented by common academic
or commercial simulators such as SUMO or VISSIM. The
simulation models were extracted from CityMoS, a CPU-based
microscopic traffic simulator [12]. To acquire a fair baseline
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Fig. 2: Top: dependencies among the stages in a simulation
time step. If inter-agent dependencies are ignored during the
Act stage, a separate conflict resolution stage is required.
Bottom: the execution schemes considered in our experiments
and the means of data transfer from one stage to the next.

while termination criterion not satisfied do
foreach agent in parallel do

agent.model1.sense()
agent.model2.sense()
...

end
foreach agent in parallel do

agent.model1.think()
agent.model2.think()
...

end
foreach agent do

agent.model1.act()
agent.model2.act()
...

end
advance simulation time

end
Algorithm 2: Pseudo code of the core execution loop of an
agent-based simulation after applying loop fission. Since the
Sense and Think stages are independent across agents, the
first two for-loops can both be trivially parallelised.

for performance comparisons, we parallelise the portions of
the simulation that do not require substantial changes to an
existing simulator architecture.

1) Architecture: In the CPU-based execution scheme, we
execute the entire simulation on the CPU. As discussed above,
the Sense and Think stages can be executed independently for
each agent. Parallelisation of the Act stage mandates efficient
synchronisation and conflict resolution and thus profound
changes to the simulator architecture, which a variety of
existing works have explored [28], [29]. Since our focus is
on the transition from a CPU-based simulator to a heteroge-
neous execution, we restrict the parallelisation of our initial
CPU-based implementation to the Sense and Think stage.
A fully parallelised execution scheme will be explored in
Section IV-D. In this work, we focus on parallelisation within
a single execution node.

Considering the pseudo code of Algorithm 1, there is
one loop iteration for each agent, each iteration covering all
models for the current agent. Since the agent states are only
updated in the Act stage, Sense and Think can be parallelised
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across all agents. However, the data dependencies given by
the interactions among agents in the Act stage prohibit a
straightforward parallelisation. Thus, we adapt the control flow
to separate the Sense and Think stage from the Act stage.

The required transformation of splitting a loop into mul-
tiple loops is known as loop fission [30]. Algorithm 2 lists
pseudo code of the simulation after loop fission. Although the
computational steps are unchanged on a conceptual level, loop
fission distributes the accesses to each agent’s state variables
across multiple loops. Due to the decrease in memory access
locality, a performance decrease must be expected. We study
the effect of loop fission on the performance in Section IV-B3.

2) Implementation: We restructured the simulator code by
applying loop fission. The parallelisation is performed using
OpenMP by annotating the for-loops of the Sense and Think
stages. To limit contention for the workload among the CPU
threads, we configured a chunk size of 1000 agents. During the
Sense stage of the car-following and lane-changing models, the
respective output is stored in a per-agent element of an array.
The two resulting arrays form the input to the Think stage of
the two models.

For lane-changing behaviour, we rely on Ahmed’s model,
which requires drawing two uniformly distributed random
numbers in [0, 1] for each agent at each time step. To achieve a
fair comparison with the GPU-based implementations, we use
the MWC64X generator2, for which efficient implementations
exist both in plain C and OpenCL.

3) Performance Evaluation: The experiment is conducted
on the platform equipped with a dedicated GPU. As illustrated
in Figure 3, loop fission slightly decreases performance. The
runtime was increased by 15% in the worst case. When
applying the OMP-SENSE-CPU scheme, i.e., with only the
Sense stage parallelised by OpenMP, a performance gain of
at least 1.30x is observed. The speedup is increased by also
parallelising the Think stage (OMP-SENSE-THINK-CPU),
achieving at least 1.68x for all cases. The highest speedup is
achieved when the agent generation rate is 5 per time step for
both the OMP-SENSE-CPU and OMP-SENSE-THINK-CPU
schemes, with a respective speedup of 1.58x and 1.95x.

2http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html



C. Partial Offloading

In the following, we aim at accelerating the simulation
in a heterogeneous CPU/GPU environment. We first explore
an offloading approach [31], [32], where computationally
intensive portions of the simulation are offloaded to the GPU.

1) Architecture: The offloading approach follows the idea
of the parallelised CPU-based execution: we exploit the inde-
pendence of per-agent stages. However, since the GPU does
not have direct access to the host memory, data transfers
over the PCI-E bus are introduced. The Think stage is a
natural candidate for offloading, since it relies only on the
output of the Sense stage. In contrast to this, the Sense
stage accesses both the static environment, i.e., the lengths
and speed limits of nearby road segments, and the states
of nearby agents. Similarly, an agent’s Act stage relies on
the static environment and may interfere with the agent’s
neighbours. Thus, offloading the Sense or Act stage would
require transferring substantial parts of the simulation state to
the GPU at each time step, which instead suggests porting
the entire simulation to the GPU. Based on this reasoning,
we offload only the Think stage and explore full offloading in
Section IV-D. As in the CPU-based scheme, the Sense stage
is executed in parallel on the CPU. The Act stage is executed
sequentially on the CPU.

At the start of each Think stage, the CPU transfers the
data needed for the computation from the host memory to the
graphics memory. The GPU processes the data and transfers
the results back to the host memory. Further, we explore the
offloading scheme using an APU, allowing us to avoid data
transfers over the PCI-E bus.

2) Implementation: The implementation of the offloading
scheme follows the general approach used for the Think stage
in the CPU-based scheme, replacing the for-loop of the Think
stage with a call to GPU code that executes the stage in parallel
for all agents. Our implementation is based on OpenCL, which
allows us to execute the same code on a CPU, GPU, or APU.
OpenCL API calls are used to transfer the model input data to
the GPU, to call an OpenCL kernel executing the model, and
to transfer the model output data back to the host memory.
On the GPU, each thread executes the model for one agent.
The OpenCL implementation of the models is nearly identical
with the plain C++ implementation, apart from the indexing
based on GPU threads required in OpenCL. Additional arrays
in graphics memory are used to store the model input and
output for each agent. The input array is filled by a data
transfer from host memory prior to the OpenCL call. After
the OpenCL call has finished, the content of the output array
are transferred to host memory. On the CPU, each agent reads
the respective output values from the output array during the
subsequent Act stage. Quantitatively, the input data comprises
16 bytes per agent for the car-following model and 52 bytes
for the lane-changing model. The output for each models com-
prises 4 bytes per agent. The implementation targeting APUs
follows the same general process. However, to utilise the zero-
copy technique, the input and output arrays accessed by the
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OpenCL kernels are created using the OpenCL memory flag
CL MEM USE HOST PTR [33], which allocates memory in
a shared space that can be accessed by the CPU and the GPU
portion, avoiding data transfers.

3) Performance Evaluation: We evaluate the partial of-
floading with respect to purely CPU-based execution and
offloading of the Think stage to the GPU, both for the platform
with a dedicated GPU (OCL-THINK-CPU and OCL-THINK-
GPU) and for the APU platform (OCL-THINK-ACPU and
OCL-THINK-AGPU).

The configured workgroup size in OpenCL can have a
substantial impact on the overall performance. The best-
performing workgroup size depends on properties of the
hardware and the computation to be performed [34]. To find
the best configuration, we vary the workgroup size from 128
to 8192 for the CPU and 128 to 1024 for the GPU both for
the car-following and the lane-changing kernels. As depicted
in Figure 4, the smallest workgroup size 128 always leads to
best performance on the CPU. In contrast to the CPU, we
observe that the workgroup size configurations we studied do
not have an obvious impact on the GPU performance. We set
the GPU’s workgroup size to 128. The same value of 128 was
identified to achieve the best performance on both the CPU
and GPU portion of the APU platform. In the remainder of the
paper, we will use the best configurations in all measurements.

Figure 5 shows a comparison of partial offloading execution
schemes. A speedup of 1.8x over sequential execution on the
CPU (SEQ-CPU) is achieved for OCL-THINK-GPU, i.e., of-
floading the Think stage to the dedicated GPU. OCL-THINK-
CPU produces a slightly better result, achieving a speedup
up to 2.0x, due to the relatively lightweight computations in
relation to the data transfer overheads introduced by OCL-
THINK-GPU.

However, on the APU, on which the data transfer overhead
for offloading is eliminated, OCL-THINK-AGPU achieves an
overall speedup of up to 1.7x over CPU-SEQ on the CPU por-
tion of the APU, outperforming both the OCL-THINK-ACPU
and OMP-SENSE-THINK-ACPU schemes (cf. Figure 6).

Although the Think stage can be accelerated substantially
by offloading, the overall performance gain is limited by
Amdahl’s law: since the Think stage constitutes about 18.6%
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Fig. 6: Speedup with error bars showing standard errors over
sequential execution when parallelising Sense by OpenMP
and Think by OpenCL on the CPU portion of an APU
(OCL-THINK-ACPU) and when offloading Think to the GPU
portion of an APU (OCL-THINK-AGPU).

of the runtime on the APU platform given the Sense stage has
already been parallelised, an upper bound on the speedup is
given by 1/(1 − 0.186) = 1.23. Thus, our aforementioned
speedup of 1.18x is close to the theoretical maximum if
offloading is limited to the Think stage.

D. Full Offloading

In the previous section, we observed that offloading the
Think stage can already give some performance gains. How-
ever, even if we avoid data transfers using zero-copy memory
access on an APU, the performance gains are limited by
Amdahl’s law. As discussed in Section IV-C, offloading Sense
and Act requires access to nearly all of the simulation state and
static environment data. This situation suggests a full port of
the simulator to OpenCL instead. In the following, we present
and evaluate a fully offloaded traffic simulator running entirely
on a many-core GPU. Due to the implementation in OpenCL,
the simulator also supports a parallelised execution on a CPU.

1) Architecture: In this execution scheme, major data trans-
fers are only required during initialization to set up the static
environment and to provide the simulator with the initial
scenario parameters. Subsequently, the simulation proceeds
as a sequence of OpenCL kernel calls, with minor data
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(a) Example of a portion of the graph-based road network, showing
3 links with a total of 4 lanes (l1 to l4) and 7 vehicles (a1 to a7).
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(b) Representation of the road network in memory. Each lane li is a
ring buffer holding vehicles aj ordered by their position on the lane,
with associated indexes for the head (circle) and the initial index of
vehicles entering from other lanes (rectangles).

Fig. 7: Road network representation in OCL-ALL-CPU and
OCL-ALL-GPU.

transfers to signal the termination of the simulation. Output of
simulation statistics may be performed either by data transfers
during the simulation or once the termination criterion is met.

Considering the dependencies between the agent stages, the
Sense and Think stages are now both trivially parallelisable.
However, when parallelising the Act stage, the potential inter-
actions among agents must be considered: when moving, mul-
tiple agents may enter overlapping positions in the simulation
space. While a sequential execution with one-by-one position
updates can avoid such situations, a parallelised execution
requires a conflict resolution mechanism to achieve consistent,
i.e., collision-free, agent states. We perform conflict resolution
after the Act stage.

2) Implementation: In our implementation of the fully
GPU-based execution scheme, each agent is a structure com-
prised of a numerical identifier as well as the current and
desired lane, position, and velocity. Each lane in the road
network is represented by a ring buffer holding the agents
currently on the lane, ordered by their positions (cf. Figure 7).
As in the offloading version, apart from the indexes used to
access the input and output data, the OpenCL code for the car-
following and lane-changing model are nearly identical with
the CPU implementation.

Six OpenCL kernels are called at each time step:
1. SpawnVehicles: in this kernel, a single thread creates

and initialises a configurable number of new vehicles.
2. CollectActiveLanes: as preparation for the Sense and

Think stages, lanes with at least one vehicle are gathered in
an array. Each GPU thread evaluates one lane.



3. SenseAndThink: this kernel combines the Sense and
Think stage of both the car-following and lane-changing
model. Each workgroup operates on one active lane, with each
thread handling one agent at a time.

4. Act: this kernel actualises the desired lane, position and
velocity determined in SenseAndThink. Since the Act stage
may affect the number and indexes of agents on each lane,
we avoid synchronisation by executing only a single thread per
lane. However, when an agent enters a lane, synchronisation
is still needed to avoid inconsistencies when multiple agents
enter the same lane at the same time step. To this end, an
atomic operation increments the index of the insertion position
at the tail of the target ring buffer (rectangles in Figure 7b),
retrieving the old index. The agent can then safely be stored
at the old index. The insertion into the sorted ring buffer is
performed in the next kernel. We mark agents that leave the
current lane so they can be removed by the next kernel.

5. SortLanes: during the Act stage, agents may change
lanes, which may affect the relative positions of agents on the
target lane. To restore the ordering on each lane, we sort the
vehicles by position, including new agents entering the lane.
Agents that leave a lane are removed from the ring buffer.
Since each lane typically holds at most a few dozen agents,
we apply sequential quicksort using one thread per lane.

6. ResolveConflicts: overlaps between the agents are re-
solved by moving a vehicle that has performed a lane change
or advanced to the next link back to the original lane. If
more than one vehicle involved in a conflict has entered a
new link, the vehicle that is further behind is moved. Each
conflict resolution round may affect the ordering at each
lane, and may also create new conflicts. Thus, SortLanes and
ResolveConflicts are executed until no further conflicts occur.

The implementation based on ring buffers and the synchro-
nisation based on atomic operations closely resembles GPU-
based discrete-event simulations, which have been shown to
achieve high speedup over a CPU-based execution [35], [36].
Our approach to conflict resolution postpones the conflict
resolution to after the Act stage and iterates until all conflicts
have been resolved based on the relative position of agents.
Alternative approaches to conflict resolution for agent-based
simulations on GPUs, as well as considerations of determinism
and bias, have been studied in [37].

Since the CPU-based and partially offloaded versions ex-
ecute the Act stage sequentially, conflicts can be avoided
entirely. However, our conflict resolution approach affects
the results only marginally compared to SEQ-CPU, with
deviations in average travel times smaller than 3% for all tested
parameter combinations.

3) Performance Evaluation: Initial performance evaluation
runs showed that the performance of OCL-ALL-CPU and
OCL-ALL-GPU was only marginally affected by the work-
group size. The measurements described in the following were
executed with a workgroup size of 64 for all kernels.

As shown in Figure 8, the speedup achieved when paral-
lelising all stages on the CPU (OCL-ALL-CPU) is up to 6.7x.
A maximum speedup of 28.7x is achieved for OCL-ALL-
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Fig. 8: Overall comparison of the execution schemes over
sequential execution with error bars showing standard errors.

GPU at low traffic density (agent generation rate of 2). In a
more congested traffic scenario with an agent generation rate
of 100, the performance gain by the parallelised execution is
counteracted by the increasing overhead for conflict resolution,
leading to a smaller overall performance gain. However, even
in the most congested scenario, a speedup of 14.8x is achieved.

E. Comparison

Figure 8 gives an overview of the speedup gained by the
different schemes on the platform with the dedicated GPU.
Table II (generation rate = 2) and Table III (generation rate
= 100) show the percentages of runtime per time step spent
on the Sense, Think and Act stages. For the OCL-ALL-
CPU and the OCL-ALL-GPU schemes, CollectActiveLanes
and SenseAndThink are considered jointly as a single “Sense
and Think” stage. The time spent on Act, SortLanes and
ResolveConflicts is counted towards the Act stage.

OpenMP parallelisation in OMP-S-T-CPU (OMP-SENSE-
THINK-CPU) halves the runtime for the Sense stage com-
pared with SEQ-CPU, whereas the runtime spent on Think is
reduced to less than a third. Offloading reduces the runtime
spent on the Think stage by a factor of up to 16.

Due to the small contribution of the Think stage to the
runtime, the speedup through partial offloading is modest,
with a maximum speedup achieved through offloading is
only up to 19%. On the hardware used in our experiments,
the performance gains by parallelisation using OpenMP and
OpenCL on the platform with the dedicated GPU are close
(cf. Figure 8). Substantial speedup is achieved by the OCL-
ALL-GPU scheme, i.e., executing the entire simulation on
the GPU. The jointly considered Sense and Think stages
are accelerated by a factor of 34.3 and 49.4 with an agent
generation rate of 2 and 100, respectively. With the more
congested scenario, a considerable amount of time is spent
on the conflict resolution, with 79.6% spent on the Act stage.

V. DISCUSSION

From the performance evaluation results, we can make
a number of general observations: firstly, in the considered
models, the Think stage takes up a relatively small portion
of the overall runtime. Even in a scenario with a peak of
about 50 000 vehicles concurrently on the road, Think only



TABLE II: Absolute and relative time spent on one iteration
of each stage. Agent generation rate: 2 per time step.

Absolute [ms] Relative [%]
Sense Think Act Sense Think Act

SEQ-CPU 7.94 2.41 4.92 52.0 15.8 32.2
OMP-S-T-CPU 3.64 0.71 4.74 40.0 7.8 52.2

OCL-THINK-CPU 3.69 0.20 4.90 42.0 2.3 55.7
OCL-THINK-GPU 3.78 0.39 4.58 43.2 4.5 52.3

OCL-ALL-CPU 0.60 1.67 26.5 73.5
OCL-ALL-GPU 0.32 0.21 59.8 40.2

TABLE III: Absolute and relative time spent on one iteration
of each stage. Agent generation rate: 100 per time step.

Absolute [ms] Relative [%]
Sense Think Act Sense Think Act

SEQ-CPU 15.29 5.95 9.77 49.3 19.2 31.5
OMP-S-T-CPU 6.65 1.58 9.14 38.3 9.1 52.6

OCL-THINK-CPU 7.03 0.41 9.58 41.3 2.4 56.3
OCL-THINK-GPU 7.37 0.53 10.31 40.5 2.9 56.6

OCL-ALL-CPU 1.50 4.05 27.0 73.0
OCL-ALL-GPU 0.43 1.66 20.4 79.6

contributes about 20% to the runtime. Hence, the gains achiev-
able by offloading the Think stage are inherently limited: we
achieved up to about 18% speedup by offloading to an APU,
only slightly exceeding the speedup by a simple parallelisation
of the Sense and Think stage on a CPU. For simplicity, a
purely CPU-based parallelisation of these two stages may be
preferable.

Secondly, substantial speedup can be achieved when paral-
lelising all stages. The achieved runtime reductions by a factor
of more than 28 on a GPU may put some large-scale parameter
studies into reach that would be considered overly time-
consuming using a sequential simulator. Since even on a multi-
core CPU, our OpenCL implementation achieves a speedup of
more than 6, our results show the suitability of common traffic
simulation models for fine-grained parallelisation. Since only
small amounts of computation are required at each time step
of the simulation, retaining all simulation data within a single
device contributes positively to the performance.

Our measurements are specific to the selected driver be-
haviour models: the Intelligent Driver Model for car-following,
and Ahmed’s model for lane-changing. However, we expect
other microscopic traffic simulation models to exhibit similar
demands in terms of input data, since a realistic representa-
tion of driver behaviour must be assumed to depend on the
positions and velocities of nearby agents. Thus, for offloading
approaches to achieve significant speedup even with the cost
of the added data transfers, the computational demands of
the models would need to be substantially larger than those
of the models considered in the present paper. While the
measurements cannot be generalised to other models, all
considered execution schemes apart from OCL-ALL-GPU are
applicable to other agent-based models that can be structured
according to a Sense-Think-Act cycle. While OCL-ALL-GPU
relies on the Sense-Think-Act cycle as well, it makes use of
properties specific to traffic simulation on a graph-based road
network and requires a model-specific conflict resolution step.

When considering the pure OpenCL simulator implementa-
tion, there are still obvious opportunities for runtime reduction.
At high traffic density, more than three quarters of the simula-
tion runtime are spent in the Act stage, which includes conflict
resolution. Currently, each round of conflict resolution checks
for conflicts with respect to every agent on every lane of the
road network. However, rules could be formulated to limit the
set of agents that may be involved in a conflict: for instance,
depending on the considered models, conflicts may only result
from agents either performing a lane change or advancing to
the next lane. In such a case, considering only those agents
that have entered a new lane may substantially reduce the cost
of each round of conflict resolution.

An important challenge of a fully OpenCL-based paralleli-
sation is the effect on the maintainability and extensibility
of the simulator. Many common constructs are not easily
available and will typically need to be substituted with imple-
mentations developed from scratch. Such constructs include
the container types from the C++ standard template library,
libraries for computing output statistics, facilities for disk input
and output or for coupling with other simulation tools. This
puts a substantial burden on the simulationist, who may not
be an expert in parallel programming. An interesting avenue
for future work may be a GPU-based traffic simulator core
with an application programming interface that exposes com-
mon functionality for scenario generation, data aggregation,
configuration of termination criteria, detection of simulation
events, and so forth. With these functionalities, the simulation
could be accelerated on a GPU, while still providing users with
easy-to-use facilities for steering and analysing the simulation.

VI. CONCLUSIONS

In this paper, we explored execution schemes for partial and
full offloading of microscopic traffic simulations to heteroge-
neous hardware. Our main findings are as follows: offloading
of only parts of the simulation provides only minor benefits,
since the most computationally demanding stages of each
simulation time step require access to large portions of the
simulation state. We showed that similar performance gains as
with partial offloading can be more easily achieved by exploit-
ing the concurrency of the trivially parallelisable parts of the
simulation using a CPU. By executing the entire simulation on
a GPU, data transfers are avoided, allowing for a speedup of
up to 28.7x over a sequential CPU-based execution. However,
the added need for resolving conflicts among agents as well as
the higher complexity of the fully parallelised implementation
may make simulation development more cumbersome. In
future work, we intend to add generic facilities for common
simulation tasks such as statistics aggregation and simulation
coupling to the fully offloaded execution scheme. We aim
for further performance gains by decreasing the overhead
of conflict resolution. We hope that our publicly available
implementation will support future studies in traffic simulation
using heterogeneous hardware.
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